

SUPRA SERVER PDM

RDM Administration Guide
(OS/390 & VSE)

P26-8220-64

SUPRA® Server PDM RDM Administration Guide (OS/390 & VSE)

Publication Number P26-8220-64

 1985–1989, 1991–1994, 1997, 1998, 2000, 2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio® is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220-64, is dated January 15, 2002. This document supports
Release 2.7 of SUPRA Server PDM in IBM mainframe environments.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
 Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: SUPRA Server Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U.S.A.

mailto:helpna@cincom.com

Contents

About this book xi
Using this document... xi

Document organization ... xi
Revisions to this manual .. xii
Conventions .. xiii

SUPRA Server documentation series .. xvi

Overview of the SUPRA Relational Data Manager 19
The user’s perspective—views ...21

Accessing views...21
Subsetting views ..22

The DBAs perspective—three-schema architecture...23
Internal schema..23
Conceptual schema—base views ..24
External schema—derived views ...25
RDM security..26

The DBA function in the RDM ...27
System requirements ..28

Directory...28
Physical Data Manager ..28
Hardware..28

RDM Administration Guide v

Accessing user data 29
Overview of base views and derived views .. 29
Designing derived views ... 31
How the RDM constructs rows ... 32
Providing keyed access .. 33

Unique keys ... 35
Nonunique keys ... 38
Constant keys .. 39
Required columns.. 39

Using domains, null values, and default values for physical fields 40
Validation options .. 41
Null values ... 45
Default values .. 47

Modifying user data 49
Changing the database contents .. 49

Inserting information to the database .. 51
Updating information on the database... 52
Deleting information from the database... 53
Allowing shared column values ... 54

Retrieving data with the RDM ... 55
Database penetration .. 56
Database sweep .. 57
Indexing ... 57
Navigational constraints and boundaries... 57

Status indicators ... 58
Function status indicators .. 59
Column status indicators ... 60
Validity status indicators .. 62

Defining and using derived views 63
Defining derived views.. 64

Column definition ... 64
Access definition.. 72

Examples of derived view definitions.. 76
Base relations .. 76
Base views... 78
Derived views .. 80

Processing derived views ... 85
Processing the GET command ... 85
Processing the INSERT command.. 86

Contents

vi P26-8220-64

Maintaining referential integrity 87
Integrity rules and checking...89
Foreign key value integrity...90

Insertion integrity ..91
Update integrity ..93
GET processing ...95
Deletion integrity...96

Referential integrity examples...99

Maintaining the RDM 103
Defining and testing views with DBAID ...104

Signing on to DBAID and RDM ..105
Defining base views ...106
Defining a derived view ..110
Retrieving records ..111
Inserting records ..112
Updating a row ...113
Modifying a view definition ...114

Maintaining current programs and views ..115
Checking currentness of program..120
Checking currentness of view bindings..120

Optimizing performance..121
Global view support..122
View binding ...125
Installing the RDM resident module in shared memory126

Gathering and interpreting statistics..128
Gathering statistics with DBAID ...128
Gathering statistics in an application program ...128
Interpreting RDM statistics ...129
Statistics example ..129

Relating views to users ...130
Recovering data ..132

Contents

RDM Administration Guide vii

Managing views with the DBAID commands 133
Introduction to DBAID ... 133

System commands .. 136
Editing commands ... 136
RDML commands.. 137
Built-in view commands... 138
Statistic commands ... 138

= command... 139
BIND command .. 140
BYE command.. 142
BY-LEVEL command.. 143
CAUTIOUS Command ... 145
COLUMN-DEFN command .. 146
COLUMN-TEXT command... 148
COMMIT command .. 149
COPY command... 150
DEFINE command.. 152
DELETE command... 153
DENY command... 155
EDIT command... 156
ERASE command... 157
FIELD-DEFN command.. 158
FORGET command.. 160
GET command ... 161
GO command ... 164
INSERT command.. 168
KEEP command ... 172
Line-number command... 173
LINESIZE command... 175
LIST command ... 176
MARK command .. 178
MARKS command .. 179
OPEN command... 180
PAGESIZE command... 182
PERMIT command ... 183
PRINT-STATS command ... 184
PUBLIC-DENY command... 185
PUBLIC-PERMIT command ... 186
PUBLIC-VIEWS command... 187
RELEASE command .. 188
REMOVE command ... 189
RENUMBER command .. 191
RESET command... 192
SAVE command ... 193
SHOW-NAVIGATION command.. 195
SIGN-OFF command.. 197

Contents

viii P26-8220-64

SIGN-ON command..198
STATS command..199
STATS-OFF command ...200
STATS-ON command ...201
SURE command ...202
UNDEFINE command...203
UPDATE command...204
USER-LIST command ..207
VIEW-DEFN command...208
VIEWS command..209
VIEWS-FOR-USER command ...210

Using the RDM reports 211
DBA report...213
Programmer’s report ...215
End user report ...218
Impact of change report ..220

Files impacting views report...220
Views impacting views report ...222
Views impacting programs report ..223

Views used by programs report ..224

Configuring the RDM for your environment 225
Overview of configuring the RDM for your environment ...225
Configuring the RDM XA storage..228
Interaction of options parameters..229

Environment description parameters ...230
The connect/sinon process ..231
OPER CONNECT parameters...232
RDML processing...233
PDM thread processing..235
CICS processing ..236

Customizing the RDM processing with user exits 237
Overview of customizing the RDM processing with user exits..................................237
Using database exits...240

Using environment-independent database exits ..242
Using environment-dependent database exits...245

Using RDML exits ...249
Using the before-function exit (CSVXBFOR) ...250
Using the after-function exit (CSVXAFTR)...252
Using the TASKID exit (CSVXTSID) ..254

Using validation exits...256

Contents

RDM Administration Guide ix

Setting the online RDM options with macros 261
Overview of setting the online RDM options with macros... 261

Index 273

Contents

x P26-8220-64

About this book

Using this document
This manual is intended for the DBA, the person responsible for
designing and modifying the logical and physical structure of your
database.

Document organization
The information in this manual is organized as follows:

Chapter 1—Overview of the SUPRA Relational Data Manager
Provides an overview of the RDM.

Chapter 2—Accessing user data
Explains how to design derived views, how the RDM constructs a row
of data, and how to specify keys, null values, defaults, and validation
options for a view.

Chapter 3—Modifying user data
Explains how to modify user data.

Chapter 4—Defining and using derived views
Explains how to define and use derived views.

Chapter 5—Maintaining referential integrity
Explains referential integrity and how to maintain it.

Chapter 6—Maintaining the RDM
Describes the RDM maintenance functions. It describes how to
create and test views, how to create and maintain the relationship of
views with applications and users, how to analyze and optimize the
RDM performance, and how to recover data.

Chapter 7—Managing views with the DBAID commands
Lists and describes the DBAID utility commands for managing views.

Chapter 8—Using the RDM reports
Explains how to use the RDM reports.

RDM Administration Guide xi

Chapter 9—Configuring the RDM for your environment
Tells how to find the information to configure the RDM for your
operating environment. It also summarizes the new RDM features.

Appendix A—Customizing the RDM processing with user exits
Describes the RDM user exits for customizing RDM processing.

Appendix B—Setting the online RDM options with macros
Describes the RDM macro C$VOOPTM for setting user options.

Index

Revisions to this manual
The following changes have been made for this release:

♦ The illustration under “Using the after-function exit (CSVXAFTR)” on
page 252 has been corrected to show 5 parameters.

♦ The table showing addressing modes for RDM user exit programs on
page 240 has been corrected to show the addressing modes for
modules CSVXCFNC and CSVXCSTA are the same as the
addressing mode for the invoking user application.

♦ The NORMAL product is no longer distributed. If you use NORMAL,
retain your files and previous documentation. References to
NORMAL in this document have been deleted.

About this book

xii P26-8220-64

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
PUT 'customer.dat'
GET 'miller\customer.dat'
PUT '\DEV\RMT0'

Slashed b (b/) Indicates a space (blank).
The example indicates that four
spaces appear between the
keywords.

BEGNb/b/b/b/SERIAL

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate one
of the following situations:

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a WHERE clause.

[WHERE search-condition]

 Stacked items enclosed by brackets
represent optional alternatives, one
of which can be selected.
The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

(WAIT)
(NOWAIT)











About this book

RDM Administration Guide xiii

Convention Description Example

Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or to
stack parameters.) Braces
surrounding stacked items
represent alternatives, one of which
you must select.
The example indicates that you
must enter ON or OFF when using
the MONITOR statement.

MONITOR
ON
OFF









 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either STAT or STATISTICS.

STATISTICS

(For new
information)

Technical changes and new
information pertinent to this release
are marked by underlining.

The minimum record length is
21 for primary datasets and
41 for related datasets.

Ellipsis points... Indicate that the preceding item can
be repeated.
The example indicates that you can
enter multiple host variables and
associated indicator variables.

INTO :host-variable [:ind-
variable],...

About this book

xiv P26-8220-64

Convention Description Example

UPPERCASE
lowercase

In most operating environments,
keywords are not case-sensitive,
and they are represented in
uppercase. You can enter them in
either uppercase or lowercase.

COPY MY_DATA.SEQ

HOLD_DATA.SEQ

Italics Indicate variables you replace with a
value, a column name, a file name,
and so on.
The example indicates that you
must substitute the name of a table.

FROM table-name

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

(user-id, password, db-name)

INFILE 'Cust.Memo' CONTROL
 LEN4

SMALL CAPS Represent a keystroke. Multiple
keystrokes are hyphenated.

ALT-TAB

OS/390
VSE

Information specific to a certain
operating system is flagged by a
symbol in a shadowed box (OS/390)
indicating which operating system is
being discussed. Skip any
information that does not pertain to
your environment.

OS/390 See the SUPRA Server
procedure library
member TIS$RDM for
a list of RDM
procedures.

VSE See the SUPRA Server
RDM sublibrary
member TXJ$INDX for
a list of JCL.

About this book

RDM Administration Guide xv

SUPRA Server documentation series
SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including Directory Maintenance,
DBA utilities, DBAID, SPECTRA, and MANTIS. The following list shows
the manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed. For a brief synopsis
of each manual, refer to the SUPRA Server PDM Digest (OS/390 &
VSE), P26-9062.

Overview

♦ SUPRA Server PDM Digest (OS/390 & VSE), P26-9062

Getting started

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452

General use

♦ SUPRA Server PDM Glossary, P26-0675

♦ SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126

About this book

xvi P26-8220-64

Database administration tasks

♦ SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250

♦ SUPRA Server PDM Directory Online User’s Guide (OS/390 & VSE),
P26-1260

♦ SUPRA Server PDM Directory Batch User’s Guide (OS/390 & VSE),
P26-1261

♦ SUPRA Server PDM DBA Utilities User’s Guide (OS/390 & VSE),
P26-6260

♦ SUPRA Server PDM Logging and Recovery (OS/390 & VSE),
P26-2223

♦ SUPRA Server PDM Tuning Guide (OS/390 & VSE), P26-0225

♦ SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220

♦ SUPRA Server PDM RDM PDM Support Supplement (OS/390 &
VSE), P26-8221

♦ SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ SPECTRA Administrator’s Guide, P26-9220

About this book

RDM Administration Guide xvii

Application programming tasks

♦ SUPRA Server PDM DML Programming Guide (OS/390 & VSE),
P26-4340

♦ SUPRA Server PDM RDM COBOL Programming Guide (OS/390 &
VSE), P26-8330

♦ SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

Report tasks

♦ SPECTRA User’s Guide, P26-9561

Manuals marked with an asterisk (*) are listed more than once because
you use them for multiple tasks.

Educational material is available from your regional Cincom education
department.

About this book

xviii P26-8220-64

1
Overview of the SUPRA Relational
Data Manager

The SUPRA Relational Data Manager (RDM) provides a relational view
of data for end users and application programs. The RDM insulates end
users and application programs from the physical structure of the
databases and from changes in that structure.

The RDM does the following:

♦ Isolates application programmers and end users from the physical
database implementation. Allows the DBA to restructure the
database without requiring programs to be rewritten or recompiled.

♦ Provides programmers with a simplified Relational Data Manipulation
Language (RDML) for retrieving and modifying the database
contents. Application programs with RDML tend to be smaller and
take less time to code.

♦ Allows the DBA to control database security by specifying the levels
of access allowed to specified users through specified views.

♦ Enforces database integrity.

♦ Maintains data in a tabular (relational) structure.

♦ Supports relational operators.

♦ Processes data as relations.

♦ Supports multiple physical file structures.

RDM Administration Guide 19

♦ Supports null values.

♦ Performs automatic data validation.

♦ Supports default values for physical fields. People in your
organization would have different perspectives on SUPRA Server
relational data management depending on their job function:

♦ The DBA uses DBAID or Directory Maintenance to create base views
(views that access files). The DBA also uses DBAID or Directory
Maintenance to create derived views (views that access base views
or other derived views).

♦ The application programmer uses DBAID to create derived views.
The application programmer also creates and runs programs in
COBOL or PL/1 that access data with views, and may use SPECTRA
and/or MANTIS to access data with views.

♦ The end user uses SPECTRA, MANTIS, and/or in-house application
programs to access data with views.

Chapter 1 Overview of the SUPRA Relational Data Manager

20 P26-8220-64

The user’s perspective—views
Using RDM, the application programmer or end user can access
database information without needing to know the data’s physical
location, physical structure, or integrity constraints. RDM allows the user
to view data as if it were arranged in tables or relations, consisting of
rows and columns as shown in the following illustration:

CUSTOMER
Class

Q1
B4
J1

CUSTOMER
 Name

DOUG REED
TOM LANGDON

ATHENS INC

Number

E40000
F80081
H22233

CUSTOMER
 Name

DOUG REED
TOM LANGDON

ATHENS INC

CUSTOMER

ROW
ROW
ROW

COLUMN COLUMN COLUMN

VIEW - A Table of Data

Accessing views
The user accesses views provided by the DBA. The DBA creates views
and relates them to users. The DBA defines the maintenance action
(INSERT, UPDATE, and DELETE) that users can perform with a view.
The DBA can also limit a view to read-only access, with no maintenance
capabilities.

Application programmers access views through program logic using
COBOL, PL/1, or MANTIS. COBOL and PL/1 programmers use the
Relational Data Manipulation Language (RDML) precompilers to compile
RDML statements into executable code. Refer to the SUPRA Server
PDM RDM COBOL Programming Guide (OS/390 & VSE), P26-8330, or
the SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331, for information on using RDML statements in
application programs.

End users can access views directly through SPECTRA, a relational
query and update tool.

The user’s perspective—views

RDM Administration Guide 21

Subsetting views
The DBA can define generalized views that many users and programs
can access. The user can create a subset of a view’s columns or reorder
the columns to meet a specific need. A subset of a view is called a user
view.

The following figure shows an example of different users subsetting and
reordering a view. Each user is accessing the BRANCH-STOCK view
which contains five columns. The SPECTRA user uses the entire view in
the same sequence as specified in the View Definition. The MANTIS
application uses only part of the available data, and also reorders the
columns. The application programs on the right use all of the columns,
but reorder them.

 MANTIS SPECTRA

STOCK-PRODUCT
STOCK-YTD-SALES
STOCK-QNTY
BRANCH-NO
BRANCH-NAME

BRANCH-NO
BRANCH-NAME
STOCK-PRODUCT
STOCK-QNTY

STOCK-YTD-SALES
STOCK-PRODUCT
BRANCH-NAME
STOCK-QNTY
BRANCH-NO

BRANCH-STOCK
STOCK-PRODUCT
STOCK-YTD-SALES
STOCK=QNTY
BRANCH-NO
BRANCH-NAME

COBOL
PL/I

Chapter 1 Overview of the SUPRA Relational Data Manager

22 P26-8220-64

The DBA's perspective—three-schema architecture
The DBA designs and maintains the database. SUPRA Server provides
the DBA with a three-schema architecture, allowing a physical and logical
implementation that is insulated from change. Three-schema
architecture consists of internal, conceptual, and external schemas.

Internal schema
The internal schema is at the lowest level of three-schema architecture.
The internal schema defines the physical contents of the files. RDM
supports PDM primary files, PDM related files, and KSDS VSAM files.
The internal schema by itself constitutes a one-schema architecture, as
shown in the following figure:

Primary Data Set
BRAN

BRANCH-NUMBER
BRANCH-NAME
BRANCH-ADDR
BRANCH-CITY
BRANCH-STATE
BRANCH-ZIPCODE
BRANCH-REGION
BRANCH-DEL-ROUTE
BRANCH-SLS-QUOTA
BRANCH-STF-QUOTA

Primary Data Set
REGN

REGION-NO
REGION-NAME

RMS Data Set
CUST

CUSTOMER-NO
CUSTOMER-NAME
CUSTOMER-ADDR
CUSTOMER-CITY
CUSTOMER-STATE
CUSTOMER-ZIPCODE
CUSTOMER-CLASS
CUSTOMER-CR-CODE
CUSTOMER-CR-LIM
CUSTOMER-BRANCH

foreign
key to
REGN

foreign
key to
BRAN

The DBA's perspective—three-schema architecture

RDM Administration Guide 23

Conceptual schema—base views
The conceptual schema is at the middle level of the three-schema
architecture. The conceptual and internal schemas, without the external
schema, constitute a two-schema architecture (see the following
illustration). The conceptual schema defines logical access to the
physical database.

The conceptual schema consists of base views. Base views access
physical files directly. Referential integrity and file security are handled
best at the base view level.

You can define base views using the DBAID utility or Directory
Maintenance. The DBAID utility is an online and batch tool for defining
and testing views, and for relating them to users. See “Maintaining the
RDM” on page 103 for more information on using the DBAID utility.
Refer to the SUPRA Server PDM RDM PDM Support Supplement
(OS/390 & VSE), P26-8221, or the SUPRA Server PDM RDM VSAM
Support Supplement (OS/390 & VSE), P26-8222, for information on
creating base views based on the physical file type.

PDM

Base
Views

Physical
Files

BRANCH

PDMVSAM

PRODUCT

PDM

STOCK

VSAM

Chapter 1 Overview of the SUPRA Relational Data Manager

24 P26-8220-64

External schema—derived views
At the uppermost level of the three-schema architecture is the external
schema consisting of derived views. The external schema represents
the database independent of logical and physical structures, integrity, and
physical access. The following figure illustrates the three-schema
architecture:

Application
Program MANTIS SPECTRA

EXTERNAL SCHEMA

 I N S U L A T I O N

Derived View of Data

Normalized Tables

Physical Structure and Access Methods

INTERNAL SCHEMA

CONCEPTUAL SCHEMA

The DBA's perspective—three-schema architecture

RDM Administration Guide 25

Derived views are the implementation of the external schema. The
application programmer or SPECTRA user sees no difference between
base or derived views. They are both “views” of data. You can place
more restrictive security or higher levels of security on derived views;
however, you cannot override any file security or integrity specified in the
base view. Base views insulate derived views from changes to the
physical database.

You define derived views using the DBAID utility or Directory
Maintenance. You store these view definitions on the Directory for
application programmers and end users to use later. You also use the
DBAID utility to prototype and test new views before putting these views
into production. Once you define the views and relate them to users, they
are available for use. You can use RDM reports to show the definition of
a view, which users can access the view, and which programs use the
view. See “Using the RDM reports” on page 211 for more information
about RDM Reports.

RDM security
The RDM controls security in the following ways:

♦ User-to-view Relationships define which views the user can use. You
can relate both base and derived views to users using the DBAID
utility or Directory Maintenance. See “Relating views to users” on
page 130 for information on relating views to users.

♦ View Accesses define what actions a view can perform, such as
update, delete, and insert by specifying the ALLOW clause in the
View Definition. Views can be read-only, insert-only, or unlimited in
their ability to perform maintenance actions on the database. The
DBA can create derived views that impose additional security
restrictions.

Chapter 1 Overview of the SUPRA Relational Data Manager

26 P26-8220-64

The DBA function in the RDM
In an environment where a database includes data shared by many users
and programs, the DBA must develop the database definition centrally.
In such a shared environment, the database design must meet the needs
of the various users. The DBA makes the decisions for how data is to be
shared centrally.

The DBA’s responsibilities may be spread among the user groups, or
they may belong to a central person or staff. Whether you have a
database administrator or a database administration group depends on
the size and needs of your particular organization. The proper
administration of RDM requires broad knowledge of data use throughout
the organization. The DBA’s function is to do the following:

♦ Describe the logical and physical data attributes.

♦ Define relationships that exist between data units.

♦ Define how to access the data.

♦ Provide security, integrity, and validation constraints for the database.

♦ Optimize system performance.

♦ Maintain control over the definition and generation of data views.

♦ Gather users’ data needs and define views to fit those needs. The
DBA can also assist users in determining the best method for
structuring their views and application programs.

♦ Control changes made to the View Definitions, and provide copies of
definitions and changes to those who need them.

RDM reports are tools for both the DBA and the application programmer.
The reports show available views and information about the Directory.
See “Using the RDM reports” on page 211 for information about RDM
reports.

With DBAID, the DBA can design, test, and examine the performance of
a view before placing it into production use and assigning it to users. See
“Managing views with the DBAID commands” on page 133 for
information about using DBAID.

The DBA function in the RDM

RDM Administration Guide 27

System requirements
You must meet several requirements before RDM can be installed and
made operational. For information about running DBAID and RDM in the
various operating environments and modes, refer to the SUPRA Server
PDM and Directory Administration Guide (OS/390 & VSE), P26-2250.
The following sections describe general requirements for RDM.

Directory
The RDM uses the Directory to store view information. The RDML
compiler, RDM, and DBAID use the Directory. The RDM run time
processors require information contained in the Directory.

The RDM ignores some Directory data, including the following:

♦ Views data:
- Generalized-updates indicator
- RDM indicator
- Site-table name

♦ User-to-view relationship data:
- Define-generalized-updates option
- Execute-generalized-updates option
- Define-RDM-applications option
- Execute-RDM-applications option

♦ View-to-external-field relationship data:
- Alias name
- Record code
- Control-key indicator

Physical Data Manager
The SUPRA Physical Data Manager (PDM) is required to access the
Directory to retrieve and update the information required by the RDM.
The PDM is required to access PDM user files. VSAM is required to
access KSDS VSAM user files.

Hardware
The RDM runs on an IBM 370 or similar, later-model mainframe CPU
(30xx, 43xx, etc.). When running DBAID in an online environment, IBM
3270s (or equivalent equipment) are the only terminal types supported.

Chapter 1 Overview of the SUPRA Relational Data Manager

28 P26-8220-64

2
Accessing user data

Overview of base views and derived views
An application programmer or an end user (a SPECTRA user) can
access data with two types of views: base views and derived views.
Base views access only files. Derived views access base views or other
derived views. The difference is not significant to an application
programmer or end user; both base views and derived views are seen as
tables of data. The difference is important to the DBA who constructs the
views.

You can define base views on the Directory using DBAID or Directory
Maintenance. The view definition consists of defining columns in a view
and specifying the files to access. The syntax for base view definitions is
described in the SUPRA Server PDM RDM PDM Support Supplement
(OS/390 & VSE), P26-8221, and the SUPRA Server PDM RDM VSAM
Support Supplement (OS/390 & VSE), P26-8222. Base view definitions
vary depending on the types of files you are accessing.

You build derived views using DBAID. You define the columns that make
up the view and which base views to access to gather the columns. Many
derived views can access a single base view. Each derived view can
reorder the columns or include or exclude different columns. The
following figure shows how several derived views can access a single
base view. Integrity and view-to-file security are implemented at the base
view level; additional security can be implemented in the derived views.

Derived
Views

Base
Views

Additional Security

Special Purpose

My View

6 columns
Read only

“Boss” View

8 columns
All options

Another View

7 columns
Update only

Base View

12 columns
All options

File Security

File Access

RDM Administration Guide 29

A derived view may access more than one base view. The following
figure shows a derived view accessing several base views. Derived view
1 (DV-1) accesses base views 1 and 2, but can read only. Derived view
2 (DV-2) accesses all three base views and can perform all functions
(INSERT, UPDATE, DELETE, and READ). Derived view 3 (DV-3) has
UPDATE capabilities and is accessing base views 2 and 3. Derived view
4 (DV-4) is accessing only base view 3, and can only read the view.

DV-2

 12 columns

 All options

DV-1

 6 columns

 Read only

DV-3

9 columns

 Update only

DV-4

 10 columns

 Read only

Base View 3

 12 columns

 All options

Base View 1

 6 columns

 All options

Base View 2

 8 columns

 All options

Chapter 2 Accessing user data

30 P26-8220-64

Designing derived views
To design derived views, you must be familiar with your base views. You
can use Directory Reports to report on the base views, and use DBAID to
test and examine them. You can also use SPECTRA to access base
views as an end user.

Follow these guidelines to define derived views:

♦ Design the derived view for ease of use. Cincom recommends that
you limit the size of your views. In general, it is better to have many
small or medium size views than it is to have one large view
containing all the data.

♦ Create customized views according to the various job functions within
your organization. Another approach is to have certain views for
maintenance, different views for retrievals, and others for reporting.

♦ Use the DBAID utility to build and test the views and ensure their
validity before placing them into production.

♦ Derived views can access multiple base views, but they cannot
directly access files.

♦ You may impose additional maintenance restrictions (INSERT,
UPDATE, and DELETE) on derived views, but you cannot override
maintenance restrictions imposed by the base view. Refer to RDM
reports or DBAID to examine the maintenance restrictions imposed
by a base view.

♦ To centralize integrity constraints, specify all referential integrity in the
base views.

♦ When you construct a view for update, the columns in the row must
depend on the logical key value. This helps avoid update anomalies.

♦ Every column in a derived view inherits the validation criteria of the
underlying base view.

♦ It is important for programmers to know if a column is required.
“Required columns” on page 39 for information on required columns.

Designing derived views

RDM Administration Guide 31

How the RDM constructs rows
The RDM constructs one or more rows based upon the view definition
that you supply. RDM does this by obtaining data from the files or views
named in the ACCESS statements. After RDM obtains the data, it moves
the data into each column of the row from the appropriate source field or
source column, as shown in the following figure:

Column
1

Column
1

Column
2

Column
3

Column
4

Column
1

Column
3

Column
5

Column
6

Column
2

Column
3

Column
4

Column
5

Column
6

Data Set
1

Data Set
2

Data Set
3

Data Set
4

Row

Derived View 2

Derived View 1

Base View

Row

Chapter 2 Accessing user data

32 P26-8220-64

Providing keyed access
Through the view definition, you can provide keyed access to data. If you
do not provide keyed access, a serial access of the file or view results.
Even if a physical key read can be performed on the database file, you
can still define a nonkeyed view which would limit that file to sequential
access. To be selected, the physical data must be equal to the logical
key value.

There is an important difference between defining a logical key and an
access key. You define the logical key using the keyword KEY (or
NONUNIQUE KEY) in the appropriate column definition(s) in the view
definition. You define the access keys in the appropriate access
definition(s) in the view definition. The access keys determine the
accessing method to use. “Defining derived views” on page 64 discusses
view definitions in detail. In the following example, CUSTOMER-NO and
CUSTOMER-NAME are both identified as logical keys. However,
CUSTOMER-NO is the access key to the customer file.
KEY CUSTOMER-NO

KEY CUSTOMER-NAME

 CUSTOMER-ADDR

 CUSTOMER-STATE

ACCESS CUST WHERE CUSTOMER-NO = CUSTOMER-NO ALLOW ALL

Every view can have zero to nine logical key columns, and the program
can supply any number of these key values for the view. A logical key in
the view does not, of itself, cause the RDM to perform a physical keyed
access. If you define a column as a logical key and it maps to an access
key which maps to a physical key (a control key on a PDM primary file),
and the user program requests a read and supplies that logical key, the
RDM performs a keyed access of the physical file. The RDM goes
directly to the requested record.

This does not mean that you can assign only logical keys to access key
columns. For example, when you have customer numbers and order
numbers, if you define customer number (which would probably be a
physical key) as a logical key, the random access of the requested
customer number would be very quick. You could just as well define
customer name, which is a data field in the file record, as a logical key.
In this case, the RDM would service the request, and would sequentially
search the file (unless you also had an index on customer name) for a
match on the customer name supplied by the program. This is a valid
use of the logical key, but it would result in much slower processing
because it requires a serial scan of the file.

Providing keyed access

RDM Administration Guide 33

The REQ option of the column definition designates required columns. If
a column is required, it must be present and valid for the RDM to return a
row. Otherwise, the row is skipped and not returned.

Each logical key consists of one or more columns. You can assign fixed
values (constants) to a key column to constrain the application program
to retrieve or update selected records. Logical key columns are required
columns. See “Required columns” on page 39 for an example of the
impact of required columns.

You can define four different types of logical key columns: unique key,
nonunique key, constant, and unique constant. You can specify logical
keys as unique or nonunique depending upon your application
requirements and record organization. The following sections provide
information on logical key columns and required columns.

Chapter 2 Accessing user data

34 P26-8220-64

Unique keys
A relation with a unique key has one row for each key value. Each row
can map to one or more physical files. Therefore, using a unique key
with unnormalized views may retrieve more than one row for each unique
key.

You can build views that have only unique keys but still return several
rows per unique key combination. This occurs when the unique logical
keys do not uniquely specify a single logical row. Using the customer
order view (from the illustration under “Compound unique keys” on
page 37) as an example, if the customer number column is designated
as a unique logical key but the order number column is not, the user
would be able to specify customer number on a GET and retrieve
multiple records for each customer number. Basically, this is a generic
search forced on the caller because he cannot specify the order number
as part of the keyed GET.

Cincom recommends that you uniquely identify a single logical row
whenever possible. It is required for INSERT and UPDATE operations.

When you define a simple or compound unique key (see “Simple unique
keys” on page 36 and “Compound unique keys” on page 37), the
program might not supply all the values. For example, if you define the
customer number and order number as a compound unique key, the
program can retrieve the row using zero, one, or two key values. In this
way, the program can implement a generic read by specifying zero or
more key values and less than the total number of logical keys in the
view. If the program specifies just customer number, the RDM would
retrieve all orders for that customer.

If the logical key maps to the physical key of a file which maintains
uniqueness of the physical key, the RDM will let the data manager
maintain the uniqueness. If the column does not map to a unique key,
the RDM tries to keep the value unique.

Providing keyed access

RDM Administration Guide 35

Simple unique keys
Think of a simple unique key as a selection criteria. All that occurs is an
equal comparison between some column and a program-specified value.
An example of a simple unique key is the customer number. No two
customers for a company should have the same customer number.
Therefore, the key is unique. The following figure shows columns from
the customer file, pointing out customer number as a unique key.

CUSTOMER
NUMBER

CUSTOMER
NAME

CUSTOMER
ADDRESS

CUSTOMER
PHONE

Simple
unique key

Chapter 2 Accessing user data

36 P26-8220-64

Compound unique keys
A compound (concatenated) unique key consists of more than one
column (see the following figure). Assume your view has a customer
number and an order number, both defined as logical keys. At the
program level, the user can code a GET view using customer number
value and an order number value. The RDM tries to locate the row based
on both values.

CUSTOMER
NUMBER

CUSTOMER
NAME

CUSTOMER
ADDRESS

CUSTOMER
PHONE

ORDER
NUMBER

ORDER
AMOUNT

AND

Compound
unique key

It is as if the program had specified GET customer order where customer
number equals a certain value and order number equals a certain value.
Physical navigation depends on how the fields are defined on the
database and in the ACCESS statement on the Directory. For example,
if customer number and order number are defined as a compound
physical key, then the RDM takes the two key values, concatenates
them, and does a random read on that compound value.

Another example is a customer having more than one order where you
want to keep track of a particular relationship. The customer number
would reside in one file and the order number in another file. In this case,
the RDM directly reads in the customer number according to the
program-supplied value. It then sweeps the customer order file until it
finds the supplied order value. To the user program, there is no
difference; the record is being retrieved as identified by the compound
unique key.

The key value of a compound unique key is the combination or
concatenation of the logical key values. The RDM tries to keep this
combination unique. Using the customer-order example, several records
for a given customer number may exist. There also may be several rows
for a given order number, but only a single row for the customer
number/order number combination.

Providing keyed access

RDM Administration Guide 37

Nonunique keys
Nonunique keys differ from unique keys in that the RDM does not
maintain the key value as unique. The column is still required, and the
user may specify a value for the column to select rows, but the same key
value may return multiple rows. Do not confuse this with a generic
search, which also may return several rows for a given key value.

Simple nonunique keys
Another type of key is the simple nonunique key. If you can have more
than one row with the same logical key, then it is an unnormalized view
and has nonunique keys. An example is a customer file in which you
keep a list of notes or comments about each customer. You do not date
the comments and you do not want to supply another key; but for each
customer, you want to retrieve a list of comments that may have been
recorded. This is a nonunique, unnormalized view because there would
be multiple records with the same customer number. In this case, you
could define the customer number as a nonunique key. When the
program does its first GET using some customer number, the RDM
retrieves the first comment for that customer. A subsequent GET
retrieves the second comment; the third GET, the third comment, and so
on. When the RDM reaches the last note for that customer, it reaches a
boundary condition, and returns a “not found” status to the program.

Compound nonunique keys
A compound nonunique key is an extension of the simple nonunique key
in that you have more than one column defined as the key and at least
one of the keys is nonunique. All the nonunique keys together still do not
completely describe the row occurrence as unique. You can still have
more than one row with that same compound nonunique key.

A nonunique key, in combination with other keys of either type (unique or
nonunique), forms a nonunique key.

Chapter 2 Accessing user data

38 P26-8220-64

Constant keys
You can supply a logical key with a fixed value, called a constant, by
entering the keyword CONST or UNIQUE CONST in the column
definition and then assigning a literal value to the column. The RDM
uses this value as though the program had supplied the value as a key.
You can use a UNIQUE CONST column to prevent duplication on inserts
for the constant value specified. Constant columns must pass data
validity checking if checking is specified, and may not be null. A constant
key column is always a required column in the view.

You can use a constant key for value-based security. For example, you
want to define a view that retrieves only the customers from Tennessee.
You could supply a constant of TENN (or whatever your application
required) to the state column. Then, the program can retrieve and
update only Tennessee customers.

When you designate a column as a constant key, the RDM does not
return the column value in the row. For example, the user of the view
would never see the state value TENN.

Required columns
A required column must have a value that is valid and not null. It must
have a value whether or not you want to retrieve the value in a given
case. Every key column (every column with any of the qualifiers KEY,
NONUNIQUE KEY, CONST, or UNIQUE CONST) is a required column.
You can specify a nonkey column as a required column with the qualifier
REQ.

Your programmers must know which columns have been defined as
required columns since it can affect processing. If the programmer does
not include a required column in the user view, the RDM still requires the
column, even though it is not returned to the user view.

Providing keyed access

RDM Administration Guide 39

Using domains, null values, and default values for physical
fields

Every column in a view corresponds to a physical field defined on the
Directory. The definition of a physical field on the Directory specifies the
field’s characteristics such as length, format, validation option, default
value, and null value. The RDM uses these characteristics from the
Directory when processing RDML requests. Especially important in
processing views are the validation option, default value, and null values
because they are used to validate the data and maintain data integrity.

You can use the DBAID command COLUMN-DEFN to display the default
value, null value, and validation criteria for each column in a view. You
can also use this command to report on the physical characteristics of the
column, such as length, edit masks, format, and ordering. See
“Managing views with the DBAID commands” on page 133 for more
information about DBAID commands.

The following sections discuss how the RDM utilizes the information on
the Directory about a physical field.

Chapter 2 Accessing user data

40 P26-8220-64

Validation options
The Directory contains the validation options and defines the options the
RDM should use to validate a column value when mapping a column to a
physical field. The available options are:

Option Meaning
R Range Checking Specifies that the RDM should verify that

the column value is within a minimum and
maximum range specified on the
Directory.

T Table Checking Specifies that the RDM should verify that
the column value is an entry on a
validation table stored on the Directory.

E Exit Specifies that the RDM should utilize the
specified exit to verify the value in a
column.

 (Blank) No validation.

You can specify only one validation option for a particular field; options
are mutually exclusive. Refer to the SUPRA Server PDM Directory
Online User’s Guide (OS/390 & VSE), P26-1260, or the SUPRA Server
PDM Directory Batch User’s Guide (OS/390 & VSE), P26-1261, for
instructions for specifying validation options with Directory Maintenance.

The RDM performs validation checking before each INSERT or UPDATE
whenever a column in a view corresponds to a physical field with
validation. When performing retrievals on base views, the RDM checks
the Retrieval Validation Flag for each physical field. The Retrieval
Validation Flag is set to Y if the field should be validated on retrievals. If
a column maps to a physical field and the Retrieval Validation Flag is set
to Y, the RDM validates the data.

Range checking
If you specify range checking, the RDM verifies that a value in a column
is within a specified range. You can specify the minimum value and the
maximum value that the RDM uses to validate. The maximum length of
a range value is 32 bytes. This is normally sufficient for data types other
than character. For character columns that have lengths greater than 32
bytes, the range value is padded to the right with blanks during the
comparison.

Using domains, null values, and default values for physical fields

RDM Administration Guide 41

Table checking
If you specify table checking, the RDM verifies that a value in a column is
contained within a table of values stored on the Directory. You build a
table of values on the Directory and specify the name of the table for the
RDM to use. The DBA must create each validation table on the
Directory. Each entry in the table can be a maximum of 72 bytes long.
You may use hex notation if you wish.

For example, you have ten suppliers. Whenever you place an order, the
RDM verifies that the supplier you specify is one of the ten you are
authorized to use. If the supplier is in the table, your order is processed.

Exits
If you specify exit validation, the RDM calls the user-written exit program
whose name you supply for that field. You design and write the exit to
perform whatever validation checking you need. The exit must pass a
return code back to the RDM indicating whether the column’s value is
valid. See “Customizing the RDM processing with user exits” on page
237 for information about using validation exits.

Default validation
If a field’s type is defined as packed decimal or zoned decimal, the RDM
automatically verifies that the value for the field is a valid number. This
check is made after the check for nulls but before doing user-specified
validation, if any.

Chapter 2 Accessing user data

42 P26-8220-64

Join compatibility
The RDM ensures that any columns used in a join are from the same
domain unless you explicitly override this checking. For example, you
cannot join a column from a domain of numbers with a column from a
domain of alphanumeric characters. The following ACCESS statement is
incorrect because CUSTOMER-NO is from the CUSTOMER-NUMBER
domain while CUSTOMER-NAME is from the NAME domain.
ACCESS E$CU WHERE CUSTOMER-NO = CUSTOMER-NAME

The next example uses the extra equal sign to indicate that the RDM
should not perform normal domain checking. This ACCESS statement is
permissible as long as CUSTOMER-NAME and CUSTOMER-NO are the
same length.
ACCESS E$CU WHERE CUSTOMER-NAME = = CUSTOMER-NO

If one or both columns in a join do not have a domain, the RDM only
verifies that the length of both fields is the same.

Redundant columns must be from the same domain (if all redundant
columns have domains specified) unless you override this checking. You
override the normal domain checking by using the optional equal sign
when making columns redundant. The following example overrides the
restriction that REGION-NO and BRANCH-NO must have the same
domain:
REQ REGION-NO = = REGION-NO = BRANCH-NO

Using domains, null values, and default values for physical fields

RDM Administration Guide 43

GET processing
When performing GETS, the RDM validates each column in the base
view if the retrieval validation flag is set to Y. The RDM verifies the value
either by checking the validation table or the range specified, or by
utilizing the validation exit. The RDM returns an invalid column status
indicator (ASI) for each column that fails to meet the validation criteria.
Required columns must have values that are valid and not null, or the
RDM does not return a row.

INSERT processing
Before processing an INSERT command, the RDM validates each user
view column’s value. The RDM returns an invalid ASI for each column
that fails to meet the validation criteria. If all column values are valid,
then the RDM INSERT proceeds.

UPDATE processing
Before processing an UPDATE command, the RDM validates each user
view column’s value. The RDM returns an invalid ASI for each column
that fails to meet the validation criteria. If all values are valid, then the
RDM UPDATE proceeds.

Chapter 2 Accessing user data

44 P26-8220-64

Null values
The Directory allows you to define, for each field, whether the field can be
null and what value the field should contain to represent a null value. A
null value means that a column is empty and its value has no meaning.
Typically, blanks are used to represent null values. However, you can
define on the Directory what value is to represent a null value for a field;
the value can be blanks, or zero, or any value you specify.

GET processing
When the RDM processes a GET request, each column that is equal to a
null value has an ASI of missing (-), and is set to zero for numeric type
data and to blanks for all other data types. Required columns must not
be null.

INSERT processing
When the RDM processes an INSERT command, all columns with a null
ASI (an ASI of N) are set to their corresponding null value.

The application program can insert a null value into a column by setting
the ASI to N or by supplying the null value in the column. The DBAID
user can insert a null value by inserting the keyword NULL into the
column or by supplying the null value.

The RDM rejects any insert that supplies a null value for a required
column. The RDM allows a null value for a foreign key if the foreign key
is not a required column.

Using domains, null values, and default values for physical fields

RDM Administration Guide 45

UPDATE processing
When the RDM processes an UPDATE command, all columns with a null
ASI (an ASI of N) are set to their corresponding null value.

The application program can update a null value into a column by setting
the ASI to N or by supplying the null value in the column. The DBAID
user can insert a null value by inserting the keyword NULL into the
column or by supplying the null value.

The RDM rejects any update that attempts to change the value of a
required column to a null value. The RDM allows a null value for a
foreign key if the foreign key is not a required column.

If the user supplies the null value in a column, the application program is
dependent on the null value.

DELETE processing
When a view deletes a primary key, the base view definition can allow for
the foreign keys to be either cascade deleted or nullified, or to restrict the
delete. You specify that the foreign keys should be deleted by specifying
ALLOW DELETE on the access to the file containing the foreign key.
Alternatively, you specify the foreign key to restrict the delete by not
adding an ALLOW on the access to the file containing the foreign key.
You specify that the foreign keys should be nullified by specifying ALLOW
UPDATE on the access to the file containing the foreign key. This is
useful, for example, if you want to delete a region but not all of the
branches. Each branch’s region number is set to a null value until the
branches can be reassigned to a new region. See “Maintaining
referential integrity” on page 87 for more information.

Chapter 2 Accessing user data

46 P26-8220-64

Default values
The RDM uses the default value for a physical field when no column in
the user view maps to that physical field, either because the user view
subset does not include the mapping column or because the view does
not contain the mapping column. A default value for each field can be 1–
32 alphanumeric characters; however, blanks are commonly used as the
default. Default values are defined on the Directory. For fields larger
than 32 bytes, the default value is padded on the right with blanks.

Example 1. An RDM application program inserts a new branch using the
user view BRAN-USER, which is derived from the base view BRAN.
When the program inserts a new branch, it does not supply a value for
the BRANCH-STATE field. In this case, the RDM uses the default value
specified for the BRANCH-STATE field:

BRAN base view BRAN-USER user view
BRANCH-NO BRANCH-NO
BRANCH-NAME BRANCH-NAME
BRANCH-ADDR BRANCH-ADDR
BRANCH-CITY BRANCH-CITY
BRANCH-STATE BRANCH-REGION
BRANCH-REGION

The program supplies the following row:
1241 DUNCAN 124 NORTH 'B' ST ORANGE 777

The physical field that maps to BRANCH-STATE has a default value of
CA. The RDM uses the BRANCH-STATE default value, CA, and inserts
the following row into the database:
1241 DUNCAN 124 NORTH 'B' ST ORANGE CA 777

Using domains, null values, and default values for physical fields

RDM Administration Guide 47

Example 2. Another example is when a view does not contain a column
that maps to a field in the physical file. In this example, the BRAN view
does not include a column that maps to the BRANCH-STATE physical
field. When the program inserts a new branch, it cannot supply a value
for the BRANCH-STATE field. In this case, the RDM uses the default
value specified for the BRANCH-STATE field:

BRANCH file E$BR BRAN view
BRANCH-NO BRANCH-NO
BRANCH-NAME BRANCH-NAME
BRANCH-ADDR BRANCH-ADDR
BRANCH-CITY BRANCH-CITY
BRANCH-STATE BRANCH-REGION
BRANCH-REGION

The program supplies the following row:
1241 DUNCAN 124 NORTH 'B' ST ORANGE 777

The physical field that maps to BRANCH-STATE has a default value of
CA. The RDM uses the BRANCH-STATE default value, CA, and inserts
the following record into the database:
1241 DUNCAN 124 NORTH 'B' ST ORANGE CA 777

Chapter 2 Accessing user data

48 P26-8220-64

3
Modifying user data

This chapter describes how to change the contents of your database and
how to control accesses at the file or view level. It also describes the
status indicators that the RDM returns to the DBAID user or the
application program when accessing and modifying your database.

Changing the database contents
It is possible to change the contents of the database in the following
ways. You can:

♦ Insert new information.

♦ Change existing information to new values.

♦ Delete information.

The ALLOW phrase of the ACCESS statement controls maintenance
actions on a physical file or on a view. It specifies what maintenance is to
be allowed for each file and the logical actions to be performed on a view.
Therefore, you control security on a file or view level. You can use the
options in the following table with the ALLOW clause (see “Access
definition” on page 72 for more information):

Option Action
INSERT Allows insertions to the database.
UPDATE Allows updates or replacements to the database.
DELETE Allows deletions from the database.
SHARED Allows column values to be shared between views (not

available for use in derived views).
ALL Allows all forms of database modification.

RDM Administration Guide 49

The following sections discuss INSERT, UPDATE, and DELETE. The
examples are based on the sample database shown in the following
figure.

The following figure also shows that BRANCH-NO, the primary key in the
BRANCH relation, has a foreign key, CUSTOMER-BRANCH, in the
CUSTOMER relation. REGION-NO, the primary key in the REGION
relation, has a foreign key, BRANCH-REGION, in the BRANCH relation.

Primary Data Set
BRAN

BRANCH-NUMBER
BRANCH-NAME
BRANCH-ADDR
BRANCH-CITY
BRANCH-STATE
BRANCH-ZIPCODE
BRANCH-REGION
BRANCH-DEL-ROUTE
BRANCH-SLS-QUOTA
BRANCH-STF-QUOTA

Primary Data Set
REGN

REGION-NO
REGION-NAME

RMS Data Set
CUST

CUSTOMER-NO
CUSTOMER-NAME
CUSTOMER-ADDR
CUSTOMER-CITY
CUSTOMER-STATE
CUSTOMER-ZIPCODE
CUSTOMER-CLASS
CUSTOMER-CR-CODE
CUSTOMER-CR-LIM
CUSTOMER-BRANCH

foreign
key to
REGN

foreign
key to
BRAN

The base view for the subsequent examples is as follows:
> 0100 DEFINE BRANCH-VIEW
> 0200 KEY BRANCH-NO
> 0300 BRANCH-NAME
> 0400 BRANCH-ADDR
> 0500 BRANCH-CITY
> 0600 BRANCH-STATE
> 0700 BRANCH-ZIPCODE
> 0800 REQ BRANCH-REGION = BRANCH-REGION = REGION-NO
> 0900 ACCESS E$BR WHERE BRANCH-NO = BRANCH-NO
> 1000 ALLOW ALL
> 1100 ACCESS E$RG ONCE WHERE REGION-NO = BRANCH-REGION
> 1200 ACCESS E$CU WHERE CUSTOMER-BRANCH = BRANCH-NO

Chapter 3 Modifying user data

50 P26-8220-64

Inserting information to the database
For an insert to a relation, you can code your view to have the RDM:

♦ Reject the insert if the foreign key does not exist as a primary key.

♦ Use the foreign key to automatically insert it as a primary key in the
target relation.

To insert a branch to the example database, you need a region for that
branch because the BRANCH relation has a foreign key
(BRANCH-REGION) that is the primary key (REGION-NO) in the
REGION relation. You can have the RDM reject any insert of a BRANCH
if the REGION does not exist. You can also have the RDM automatically
insert a region when you insert a branch. In the example view above, the
ACCESS statement
> 1100 ACCESS E$RG ONCE WHERE REGION-NO = BRANCH-REGION

provides the integrity that will not allow insert if BRANCH-REGION is not
an existing primary key in the REGION relation. See “Maintaining
referential integrity” on page 87 for more information about referential
integrity.

The illustration under “Changing the database contents” on page 49
shows how the foreign key in the BRANCH relation references the
REGION relation.

You control insertions by defining ALLOW INSERT for the appropriate
files or views in your ACCESS statement. If you have not allowed for
insertions on a file or view, the RDM cannot insert any rows into that file
or view.

The RDM checks the validity of all columns before an insert. All required
fields must be valid and not null for an insert to succeed. You can insert
null only if nulls are allowed.

Changing the database contents

RDM Administration Guide 51

Updating information on the database
For an update to a relation, you can code your view to have the RDM:

♦ Reject the update if the foreign key does not exist as a primary key.

♦ Use the foreign key to automatically insert it as a primary key in the
target relation.

To allow updates, define ALLOW UPDATE in your ACCESS statement
for the file or view you want to update. The program can then read (GET)
a row, change a column and issue an UPDATE command. The RDM
updates the physical record. The RDM modifies only the physical
records that have changed.

For example, assume you have a view consisting of three columns from
three different files. The program gets the row, changes the value of only
one of the columns, and issues the UPDATE command. The RDM does
not do three writes to the three files; the RDM only issues one write to the
affected file.

The RDM checks the validity of all columns before an update. All
required fields must be present and not null for an update to succeed.
You can only update a column to null if nulls are allowed.

Chapter 3 Modifying user data

52 P26-8220-64

Deleting information from the database
The RDM has three types of delete integrity:

♦ Restrict delete

♦ Cascade delete

♦ Nullify delete

An example of a restrict delete is trying to delete a BRANCH that has
CUSTOMERS referencing it. If, on the ACCESS statement of the
BRANCH-VIEW example above, you code
> 1200 ACCESS E$CU WHERE CUSTOMER-BRANCH = BRANCH-NO

then the RDM will check the CUSTOMER file for customers related to the
branch number you want to delete. If customers exist for the branch, you
cannot delete the BRANCH.

In a cascade delete, you would tell the RDM to delete any customers
linked to the branch you are deleting. In that case, you must code
ALLOW DELETE on the BRANCH and CUSTOMER relations, and no
customer data may be in the view.

For a nullify delete, you code ALLOW DELETE on the BRANCH relation
and ALLOW UPDATE on the CUSTOMER relation. Then for all
customers in the branch, the RDM will set the foreign key to BRANCH to
its null value.

You control deletions by defining ALLOW DELETE for the appropriate
files or views in your ACCESS description. If you have not allowed for
deletions on a file or view, the program cannot delete any rows from that
file or view.

Changing the database contents

RDM Administration Guide 53

Allowing shared column values
You can allow column values to be shared between views by specifying
SHARED on the ALLOW phrase of the ACCESS statement in base
views. You cannot use SHARED in derived views. Using SHARED
allows for:

♦ More efficient processing because automatic column value checking
is bypassed when not needed.

♦ Modification of the same column in multiple views by the same task
or other tasks. For example:
> DEFINE VIEW1
> 0100 KEY BRANCH-NO
> 0200 KEY BRANCH-REGION
> 0300 REGION-NAME
> 0400 ACCESS E$BR WHERE BRANCH-NO = BRANCH-NO
> 0500 ACCESS E$RG WHERE REGION-NO = BRANCH REGION
> 0600 ALLOW SHARED UPDATE

The use of SHARED tells the RDM that the column values from a view
may be shared between views and may change between a GET and a
later UPDATE or DELETE. When the SHARED phrase is present, the
RDM does not check to see whether column values have changed. If
SHARED is not on the ALLOW phrase for an ACCESS statement, then
the RDM performs a check on each column in the view. This ensures
that column values have not changed. The RDM does not check
read-only columns that do not participate in the UPDATE or DELETE.

In the preceding example, the only maintenance function that can be
performed is UPDATE, and the only column that can be altered is
REGION-NAME. Because SHARED is part of the ALLOW phrase,
REGION-NAME is automatically altered. Since SHARED is part of the
ALLOW phrase, automatic hold and replace will not produce an error
even if another view changes the value of the column. If the ACCESS
statement is changed to:
> 0500 ACCESS E$RG WHERE REGION-NO = BRANCH-REGION ALLOW UPDATE

and any other view changes the column, an UPDATE or DELETE will fail.
If such a failure occurs, you will receive the following message:
FSI: D VSI: C MSG: COLUMN VALUE CHANGED BY ANOTHER VIEW

The RDM returns the function status indicator (FSI) value D, indicating a
data error, and the validity status indicator (VSI) value C, indicating that
column value(s) have been changed with another view. The RDM
returns the column status indicator (ASI) value C for each changed
column. In this case, the RDM returns C for the REGION-NAME column.
See “Status indicators” on page 58 for information about status
indicators.

Chapter 3 Modifying user data

54 P26-8220-64

Retrieving data with the RDM
The view definition for a particular view defines the characteristics of the
columns in the view and how to access the views or files. (See
“Maintaining referential integrity” on page 87 for information on how to
specify your view definition.) To properly define the access technique for
each file, you need to understand how physical navigation of the
database occurs.

Navigation is the act of moving from one record to another record. The
record could be in the same file, or it could be in a different file.
Therefore, you must understand the different relationships between
records because that affects how navigation occurs from one record to
the next and impacts the overall efficiency of the RDM.

You can set up your views so that the RDM uses one of the following
types of database navigation methods:

♦ Penetration. Efficient access method using a direct, keyed read to
the database.

♦ Sweep. Less efficient access method which involves taking a
positional step forward or backward in the database.

♦ Index. Efficient access method using an index. This section
describes the three types of navigation methods in further detail and
discusses how positional relationships impact the access method.

The simplest relationship is the one-to-one keyed relationship. Some
value from a row is used as a key to identify and access the next row. An
example would be to read a branch record, select the BRANCH-REGION
field, and use that value as a direct read to a REGION file. The key can
be constructed from many different columns in order to get to the next
row. For example, you could read FILE-A and get a piece of data, read
FILE-B and get a piece of data, and put the two pieces of data together to
be the compound key for FILE-C. If you are going from one or many files
to another and are using a key to do your retrieval, it implies a one-to-one
keyed relationship from the source to the destination.

The next kind of relationship is positional relationship. This relationship
implies placement, or location, as opposed to being based on some key
value. For example, in a sequential file, getting the next record is a
one-to-one positional relationship because you do not use a key to get it;
you use the position of the first record to get to the next.

Retrieving data with the RDM

RDM Administration Guide 55

Database penetration
Database penetration is associated with the one-to-one keyed
relationship. You can have the RDM penetrate (or access) the database
based upon a key value, beginning at one point (or physical record) and
extending outwards using the step-by-step (row-by-row) navigational
method. Penetration then is accessing the database without any context
of where the position was before you entered. An example of database
penetration is retrieving a branch view based upon a particular branch
number as the key. This retrieval does not rely on anything you have
done with the database prior to that point.

Database penetration occurs when an application or user performs a
keyed GET or a GET to establish position within the database. After the
RDM establishes position based on the logical keys, the user may
perform a positional GET without keys or another “penetrating” GET with
keys. A GET first or last row is guaranteed to penetrate the database,
while GET NEXT or PRIOR is positional.

Penetration involves the base file or view that is your starting point. This
is the first record you access. From that record, you travel outward in
one or more directions. Each time you take a step, you use that
information to take additional steps. This would resemble a tree
structure. However, it can come back together to the starting point (as
shown in the following figure) or any other place along the path.

GET Key-A
Key-A

Key-C/E

Field-B

DATA SET 1

Key-B

DATA SET 2

Key-B

Field-C

Field-D

GET

Key-DKey-D

Field-E

DATA SET 3

GET

Key-C/E

GET

Chapter 3 Modifying user data

56 P26-8220-64

Database sweep
A database sweep is taking a positional step either forward or backward.
The database sweep only occurs on a one-to-many positional
relationship. Sweeping can occur when you have already penetrated the
database and are positioned at some set of records. For example, if you
have a view consisting of regions and branches, you first penetrate the
database based on the region number. When you ask to look at the next
and subsequent branches, you are performing a database sweep based
on a positional relationship.
A sweep always uses an incremental movement, either forward or
backward. You can sweep a file without having first penetrated the
database by starting with the very first or the very last record. This is
called implied penetration.

Indexing
Using an index is an efficient way to access the database. An index
allows the RDM to penetrate the database based on an index value and
then move positionally through the database, retrieving records in index
value order.

Navigational constraints and boundaries
The RDM allows you to identify certain points along the navigation path
which you must reach for the navigation to be valid. Once you reach
those points, you can also identify certain values that must exist by
specifying certain fields as required. The navigation is unsuccessful if the
RDM does not find the fields.
Logical key columns are always required columns. Therefore, if you are
trying to access a file based on a key value and the RDM does not find
that value, navigation stops. If you are attempting a database penetration
and the RDM does not find any required columns, the RDM returns a “not
found” status to the program. However, if you are attempting a sweep
through the database, the RDM skips the rows that do not meet the
constraints and does not return them as part of that view. An example is
the region-branch view which only returns records for regions that have at
least one branch.
Certain boundary conditions exist when you do incremental movement.
When you are incrementally sweeping a keyed file, the end of the file is a
boundary. For example, if you are sweeping through a PDM related file
chain (based on a primary file key), the end of the chain is a boundary. If,
however, you sweep the related file not based on a specific primary file
key, the RDM will get the next primary file record and navigate through its
associated related file chain.

Retrieving data with the RDM

RDM Administration Guide 57

Status indicators
The RDM returns status indicators to the application program or to the
DBAID user to indicate Relational Data Manipulation Language (RDML)
processing results. The indicators are the same, regardless of whether
the view is a base or derived view. Base views pass the indicators up to
the derived view.

The types of status indicators are as follows:

♦ FSI (function status indicator). Returned after any RDML function
call and indicates the success or failure of the function.

♦ ASI (column status indicator). Returned after a DELETE, INSERT,
GET, or UPDATE RDML function call and indicates the status of
each column in the row.

♦ VSI (validity status indicator). Returned after a DELETE, INSERT,
GET, or UPDATE RDML function call and indicates the most severe
column status within the row.

Chapter 3 Modifying user data

58 P26-8220-64

Function status indicators
A function status indicator (FSI) reflects the success or failure of the
RDML function executed. The RDML processor returns the FSI to the
program in an area generated as part of the programmer-supplied
TIS-CONTROL statement. The following shows a COBOL example of
this generation (the asterisk indicates the statement the programmer
specifies; the RDML compiler generates all other statements):
 *01 INCLUDE TIS-CONTROL.
01 TIS-CONTROL.
10 TIS-OBJECT-NAME PIC X(30).
10 TIS-OPERATION.
 15 TIS-ID PIC X(2).
 15 TIS-OPCODE PIC X.
 15 TIS-POSITION PIC X.
 15 TIS-MODE PIC X.
 15 TIS-KEYS PIC X.
10 TIS-FSI PIC X.
10 TIS-VSI PIC X.
10 FILLER PIC X(2).
10 TIS-MESSAGE PIC X(40).
10 TIS-PASSWORD PIC X(8).
10 TIS-OPTIONS PIC X(4).
10 TIS-CONTEXT PIC X(4).
10 TIS-LVCONTEXT PIC X(4).

The following table lists the meanings of the FSI values:

FSI Meaning

* Successful completion. The RDML function has completed
successfully.

D Data error. The row contains invalid data.
F Failure. The RDML function has failed. Usually caused by a

physical database problem returned to the RDM.
N Not found. The RDML processor could not find an occurrence of

the requested row.
S Security check. The attempted RDML function violated a security

constraint.
U Unavailable resource. The resource required to complete this

function was not available, for example, file not open.
X Reset recommended. While processing, RDML functions modified

the database before the RDM detected the error condition. Issue a
RESET to restore the database. This code overrides D, F, S, or U
indicators.

If the RDML processor returns an FSI value of D, check the ASIs to see
which columns contain invalid data. A message associated with the FSI
is accessible in the TIS-MESSAGE area of TIS-CONTROL for all
returned indicators (see the preceding example).

Status indicators

RDM Administration Guide 59

Column status indicators
The column status indicators are called ASIs. (The A stands for attribute,
which is the same thing as a column.) Each ASI reflects the status of
each column defined in your view. ASIs have a one-to-one mapping to
each column and are placed immediately following the last column in the
view, for example:

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4 ASI ASI ASI ASI
1 2 3 4

You can access the ASIs through COBOL-assigned names generated by
the RDML compiler. The application programmer codes the program,
specifying an INCLUDE statement for the view required. The RDML
compiler generates a statement for each column included in the view.
The RDML compiler also generates a statement for each required ASI
column by preceding each column name with the four characters ASI-.
The following shows an example of this generation (the asterisk indicates
the statement the programmer specifies; the RDML compiler generates
all other statements):
*01 INCLUDE CUST-CONTACT.

 01 RDM-CUST-CONTACT.

 10 CUST-CONTACT.

 20 CUST-NO PIC S9(05).

 20 CONTACT-NAME PIC X(040).

 20 CONTACT-TITLE PIC X(040).

 20 CONTACT-PHONE PIC S9(10).

 10 ASI-CUST-CONTACT.

 20 ASI-CUST-NO PIC X.

 20 ASI-CONTACT-NAME PIC X.

 20 ASI-CONTACT-TITLE PIC X.

 20 ASI-CONTACT-PHONE PIC X.

Chapter 3 Modifying user data

60 P26-8220-64

The following table lists the meanings of the ASI values:

ASI Meaning

+ The column exists and a newly accessed record provided its value. This
ASI value is meaningful for GET processing only.

= The column exists and a previously accessed record provided its value.
This ASI value applies to GET processing only.

- The value for this column is null. Either the physical record field contains
the value defined as null, or no physical record exists to supply this column
value. The RDM returns spaces or zero, depending on the column’s data
type, as the column’s data. It does not return the actual null value. This ASI
value allows you to distinguish a null column from a column that actually
contains spaces. This ASI value applies only to GET requests.

C Another view has changed the value for this column. The RDM checks for
this when an UPDATE or DELETE command follows a GET command other
than GET FOR UPDATE. You can override this check by specifying
SHARED in the ALLOW clause of the access definition in the view

N The application has placed an N in the ASI to set a column to its null value
as part of an UPDATE or INSERT operation. The RDM never returns an
ASI of N.

V The value for this column is invalid for one of two reasons:
1. The value does not meet the validation criteria defined for this column.

Refer to “Validation options” on page 41 for information on validation
criteria.

2. The column is a foreign key, and the corresponding primary key for this
value cannot be found. Refer to “Maintaining referential integrity” on
page 87 for information on foreign keys and referential integrity.

After an INSERT or an UPDATE, C and V are the only meaningful ASIs. ASIs
that appear after a DELETE function have no meaning.

The ASI values plus (+) and equal (=) do not depend upon the state of the data
area that maps to the row. The occurrence in the physical database of a record
determines the ASI value. When you read another row, the value of a column
may not change, but since you have read a new physical database record, the
ASI is +. For example, if you are reading all of the branches for a region, each
time you read a branch, the ASI for the branch number column is + even though
the region number did not change. These values only have meaning on GET
RDML requests; on UPDATE, INSERT or DELETE requests, they are set to +.
Therefore, application programs should not depend on the value of these ASIs.

Status indicators

RDM Administration Guide 61

Validity status indicators
Validity status indicators (VSIs) reflect the validity of a view after a RDML
command causes a read of the physical database. The RDML processor
returns the VSI value to the program in an area generated as part of the
programmer- supplied TIS-CONTROL statement (refer to the example in
“Function status indicators” on page 59). The VSI value for a function is
the same as the most serious of the ASI values the RDM returns for the
columns. The ASI values the RDM can return, in order of decreasing
seriousness, are: C, V, -, +, =. (The RDM never returns the ASI value
N.) The following table is in the same order:

VSI Meaning
C Another view changed a column value.
V The RDM is returning at least one invalid ASI.
- The RDM is returning no invalid ASIs, but is returning at least

one missing (null) ASI.
+ The RDM is returning no invalid or missing ASIs, but is

returning at least one new physical occurrence in the
database.

= This RDM function is returning no invalid ASIs, missing ASIs,
or new physical occurrences.

The VSI enables the programmer to quickly determine if any additional
processing of ASIs is needed to correct invalid data or to supply missing
values.

Chapter 3 Modifying user data

62 P26-8220-64

4
Defining and using derived views

Derived views access base views or other derived views as sources of
data. You must define base views for derived views to access. Base
views access the physical files and specify all integrity constraints
between those files. You can build base views with DBAID or Directory
Maintenance. Then you can build on these base views to derive other
views without respecifying the integrity constraints. You can tailor derived
views for different users and impose additional security.

With the RDM reports, you can list all the base views defined for a given
schema on the Directory. See “Using the RDM reports” on page 211 for
information on RDM reports. This list of base views can help you design
derived views to fill the needs of the users. You can use DBAID to define
derived views and test them before saving them on the Directory.

You need not store base views on the Directory before creating derived
views that access them. A derived view can access an opened base
view whether that base view has been saved or not. Once a base view is
open, though not necessarily saved, it can be accessed. Therefore, you
can create both base views and derived views in a test environment, and
test them before modifying the Directory.

RDM Administration Guide 63

Defining derived views
The view definition contains the following types of statements:

♦ Column definitions

♦ Access definitions

Column definitions define each column included in the view. Access
definitions define how to access the views to obtain column values. You
can create these definitions using the DBAID utility (see “Signing on to
DBAID and RDM” on page 105 for a sample DBAID session) or through
the Directory Maintenance Access Set category using the VARIABLE
EDIT command. (Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for instructions for
defining views with Directory Maintenance.) All column definitions must
precede the first access definition in the view definition. While the
column definitions need not be in any particular order, define the logical
keys in the order that the supplying files are accessed.

Column definition
The column definitions, entered as part of the view definition, define each
column to include in the derived view and each column’s characteristics.
You must define the column name of each column to be included in a
particular derived view.

[][]
[] [] []

[] [][]
[] [] [] 













































constant
sourcesourcecolumn

sourcecolumn
sourcesourcecolumn

sourcecolumn

21

... == = =

 = =
 CONST UNIQUE

... == = =
 = =

][NONUNIQUE

REQ

 21

1

1

Chapter 4 Defining and using derived views

64 P26-8220-64

REQ
[NONUNIQUE] KEY











Description Optional. A qualifier specifying the characteristics of a column.

Options REQ This column is not part of the logical key.

KEY This column is part of the logical key. The logical key
is unique.

NONUNIQUE KEY This column is part of the logical key. The logical key
need not be unique.

Considerations

♦ A column with one of these qualifiers is a required column. See the
General Considerations for the effects of required columns.

♦ You can specify a maximum of nine KEY and NONUNIQUE KEY
columns in a view.

♦ If you specify KEY or NONUNIQUE KEY, you must not specify
CONST or UNIQUE CONST for this column.

Defining derived views

RDM Administration Guide 65

[UNIQUE] CONST

Description Optional. A qualifier specifying the characteristics of a column that has
an assigned constant value. A column with this qualifier is a required
column and is part of the logical key.

 Indicates that this column is required in the derived view, and the value of
the column must be equal to the given constant for the row to qualify.

Options CONST This column is part of the logical key. The logical
key need not be unique.

UNIQUE CONST This column is part of the logical key. The logical
key is unique.

Considerations

♦ If you specify CONST or UNIQUE CONST, you must supply a
constant value for the column in the definition. If you supply a
constant value for the column, you must specify CONST or UNIQUE
CONST.

♦ All CONST and UNIQUE CONST columns are part of the logical key.

♦ CONST and UNIQUE CONST columns are not returned in the row.

♦ If you specify CONST or UNIQUE CONST, you must not specify KEY
or NONUNIQUE KEY for this column.

Chapter 4 Defining and using derived views

66 P26-8220-64

column = [=]

Description Conditional. Names the access column in the view being defined, used
later in the application program.

Format 1–30 alphanumeric characters and the special characters #, -, _, and $.
The first character must be alphabetic or a special character. If the first
character is a # or $, the second character must be alphabetic.

Considerations

♦ This option allows you to assign a descriptive, meaningful name to
the application.

♦ Column names need be unique only within the view.

♦ If you do not specify a column name, RDM uses the source column
name.

♦ If you specify redundant source column names, you must specify a
column name.

♦ The column and its source(s) must be from the same domain, unless
you override domain checking by coding the additional equal sign.

source1

Description Required. Indicates the name of the column being accessed in a source.

Format The name of an existing column in a view

Defining derived views

RDM Administration Guide 67

[=]=source2[…]

Description Optional. Specifies one or more access columns, called redundant
columns, that will map to a single column in the view.

Format The name of an existing column in a view

Considerations

♦ This is a convenient method of mapping the same value to many
columns.

♦ If you specify multiple source-columns, you must specify a
column-name.

♦ If you designate the column as a KEY, REQ, CONST, or
NONUNIQUE KEY, all of the column-names you specify will have the
same constraint.

♦ RDM accesses the columns according to the order specified in the
ACCESS statements (see “Access definition” on page 72), which
does not have to be the same order specified on this statement.

♦ When using GET to retrieve a row, the values of the columns in the
view will be those of the last column accessed. The only exception is
if the column is a KEY, CONST, or NONUNIQUE KEY with the key
value given. In this case, RDM compares each redundant column
with the key value before returning the row.

♦ The columns must be from the same domain unless you specify an
override. To override the normal domain checking, include the
additional equal sign as shown:

 REQ REGION-NO = = BRANCH-REGION = REGION-NO

Chapter 4 Defining and using derived views

68 P26-8220-64

= constant

Description Conditional. Specifies the value to be assigned as a constant for this
column.

Format Specify the value as:

X'nnnnnn' Hexadecimal

nnnnnnnnn Numeric (binary, packed, or zoned)

'cccc' Character

Considerations

♦ The length of the value depends on the length of the column you are
defining.

♦ The constant is required when you specify CONST.

♦ The constant must pass validity checking if the column has
associated validation.

♦ The constant cannot be the null pattern.

Defining derived views

RDM Administration Guide 69

General considerations

♦ Any columns specified as REQ, KEY, NONUNIQUE KEY, CONST, or
UNIQUE CONST are required columns for the derived view.

♦ If a view contains two columns and one is a key and the other a
nonunique key, the view will be processed as if both were nonunique
keys. A nonunique key column makes the entire compound key
nonunique.

♦ All column definitions must precede the first access definition in the
view.

♦ Column definition statements may be in any order.

♦ Required columns restrict the number of occurrences in the view.

♦ Depending on the command, required columns affect the operation
of RDM in these ways:

Command Effect
GET All required columns must be valid and non-null.

If not, RDM takes the NOT FOUND option on
direct GETs. For sweeping GETs, RDM skips the
row. If a required column is not included in a user
view, the required column must still be present,
but RDM does not return it to the program.

INSERT or
UPDATE

All required columns must be valid and non-null.
If a required column is not included in the user
view, RDM returns a data error.

DELETE No effect.

♦ See “Required columns” on page 39 for an example of how the REQ
option affects processing.

Chapter 4 Defining and using derived views

70 P26-8220-64

Examples

♦ The column definition for this view indicates a customer-product
which may have multiple product codes for each customer.

 > 0100 KEY CUSTOMER-NO

 > 0200 CUSTOMER-NAME

 > 0300 NONUNIQUE KEY PRODUCT-CODE

 > 0400 PRODUCT-DESC

 > 0500 PRODUCT-PRICE

♦ This example shows the use of multiple column names.
 > 0100 BRANCH = CUSTOMER-BRANCH = BRANCH-NO

- With a GET, the value returned in BRANCH depends on which
column (CUSTOMER-NO or BRANCH-NO) is accessed last.
RDM does not guarantee that these two values are equal in this
case.

- An INSERT of a value into BRANCH results in the same value
being inserted into CUSTOMER-BRANCH and BRANCH-NO in
the accessed views.

- With an UPDATE, a change in BRANCH-NO updates both
CUSTOMER-BRANCH and BRANCH-NO.

> 0100 KEY BRANCH = CUSTOMER-BRANCH = BRANCH-NO = INVOICE-BRANCH

 RDM treats all three columns as keys:

- With a GET, you will retrieve only those rows that have
CUSTOMER-BRANCH, BRANCH-NO, and INVOICE-BRANCH
equal to the value given for BRANCH in the USING phrase. If
you do not supply a key value on the GET command, RDM does
not guarantee that these values are equal.

- An INSERT of a value into BRANCH results in the same value
being inserted into all three columns (CUSTOMER-BRANCH,
BRANCH-NO, and INVOICE-BRANCH).

Defining derived views

RDM Administration Guide 71

Access definition
The access definitions determine how to get from view to view, how to
access base and derived views, and the relationships you can have
between views in your access statement. Enter access definitions after
the column definitions.

If you use the WHERE clause without the USING clause, RDM
determines the best access strategy and uses it. If you use the USING
clause, RDM performs a keyed read. If you use both the WHERE and
the USING clauses, RDM performs a keyed read and applies the
additional selection criteria indicated by the WHERE clause.

ACCESS view-name [ONCE]
[USING (value1,value2…)]
[WHERE column1=[=]value1 AND column2=[=]value2…]
[GIVING column1 column2 …]

 ATEUPD
REP

ETEDEL
ERT INSOW ALL





































view-name

Description Required. Identifies the base or derived view to access.

Format Must be the name of an existing view.

ONCE

Description Optional. Indicates that you want to retrieve only the first row.

Chapter 4 Defining and using derived views

72 P26-8220-64

[USING (value1,value2…)]

Description Optional. Indicates that a logical keyed read using specified value(s) is to
be done on the view.

Format Each value is a constant or an existing column.

Considerations
♦ In an access definition accessing a derived view, you must use the

WHERE clause, the USING clause, or both. In an access definition
accessing a base view, Cincom recommends you use the WHERE
clause, the USING clause, or both.

♦ The value(s) you specify must correspond to the logical key of the
accessed view. When specifying several values, you may omit
values from the right hand side of the group of values. Subdefinitions
of logical keys are not allowed. For example, if you had the following
base view, VIEW-A, defined:

 VIEW-A
 KEY ATTR1
 KEY ATTR2
 KEY ATTR3
 .
 .

 The following derived view, accessing VIEW-A, is valid:
 VIEW-B
 KEY ATTR-A
 KEY ATTR-B
 KEY ATTR-C
 ACCESS VIEW-A
 USING (ATTR-A, ATTR-B)

 However, the following view, VIEW-C, is not valid because values
were omitted and they do not map to logical key columns, from left to
right:

 VIEW-C
 KEY ATTR-A
 KEY ATTR-B
 KEY ATTR-C
 ACCESS VIEW-A
 USING (ATTR-A,,ATTR-B)

 To correct VIEW-C, exchange the USING clause for the following
WHERE clause:

 WHERE (ATTR1 = ATTR-A)
 AND (ATTR3 = ATTR-B)

 or:
 USING (ATTR-A)
 WHERE (ATTR3 = ATTR-B)

♦ If the view that you are accessing only has one logical key column,
you may omit the parentheses.

Defining derived views

RDM Administration Guide 73

[WHERE column1=[=]value1 AND column2=[=]value2…]

Description Optional. Specifies the desired values for certain columns in this view.
RDM selects only those rows with the specified values.

Format column Must be the name of a column in the view named in the
ACCESS statement.

value The name of a column in this view or a previously
accessed view, a constant, or a logical key.

Considerations
♦ In an access definition accessing a derived view, you must use the

WHERE clause, the USING clause, or both. In an access definition
accessing a base view, Cincom recommends you use the WHERE
clause, the USING clause, or both.

♦ Each column and its specified comparison value must belong to the
same domain unless you override domain checking with the extra
equal sign.

♦ Use RDM statistics to measure the performance of the derived view.
Refer to the description of the DBAID command STATS in “Managing
views with the DBAID commands” on page 133 for information on
using statistics.

[GIVING column1 column2 …]

Description Optional. Overrides the normal data movement.

Format The keyword GIVING followed by one or more column names as defined
by the column definitions

Considerations
♦ The GIVING clause allows you to access a view more than once and

retrieve selected columns during each access. For each view that
occurs on more than one ACCESS statement and contains needed
columns, you can specify which columns to fill on which access of the
view.

♦ If you omit column names on the GIVING clause, RDM uses the view
for access only.

♦ If you omit this clause, all columns derived from accessed columns in
the accessed view that have not been supplied by some previous
ACCESS statement are filled with values using this ACCESS
statement.

Chapter 4 Defining and using derived views

74 P26-8220-64

ALLOW
INS ERT
DEL ETE

REP
UPDATE

 













Description Optional. Specifies what RDML actions you want to allow on the
accessed view.

Format Any combination is valid, for example:

 ALLOW INSERT DELETE Allows inserts and deletes but not updates.

 ALLOW UPDATE Allows updates but not inserts or deletes.

Options ALL Allows all three types of data modification.

INSERT Allows row inserts on the view.
INS

DELETE Allows row deletes from the view.
DEL

UPDATE Allows row updates or replacements on the view.
UPD
REP

Considerations

♦ RDM always allows read access to the accessed view. If you omit
the ALLOW clause, RDM allows only read access to the view.

♦ RDM allows modification of accessed data only if each relevant
access definition at each view level allows that type of modification.
For example, if the relevant access definition in the referencing
derived view specifies ALLOW ALL, and the relevant access
definition in the accessed base view specifies ALLOW UPDATE,
RDM allows updates but not inserts or deletes on the indicated data.

Defining derived views

RDM Administration Guide 75

Examples of derived view definitions
This section presents a sample database and shows how to define and
use derived views to access the sample database.

Base relations
The example conceptual schema contains five relations: BRANCH,
CUSTOMER, PRODUCT, REGION, and STOCK. These relations
contain the columns and values shown. The examples in the rest of this
chapter are built on these relations.

Relation: REGION (REGN) Type: Independent Entity

Columns Primary key Foreign relation

REGION-NO Y
REGION-NAME

Relation: BRANCH (BRAN) Type: Dependent Entity

Columns Primary key Foreign relation

BRANCH-NO Y
BRANCH-NAME
BRANCH-ADDR
BRANCH-CITY
BRANCH-STATE
BRANCH-ZIPCODE
BRANCH-REGION REGION
BRANCH-DEL-ROUTE
BRANCH-SLS-QUOTA
BRANCH-STF-QUOTA

Chapter 4 Defining and using derived views

76 P26-8220-64

Relation: STOCK (STCK) Type: Relationship

Columns Primary key Foreign relation

STOCK-BRANCH Y BRANCH
STOCK-PRODUCT Y PRODUCT
STOCK-QNTY
STOCK-BIN-LOC
STOCK-YTD-SALES

Relation: CUSTOMER (CUST) Type: Independent Entity

Columns Primary key Foreign relation

CUSTOMER-NO Y
CUSTOMER-NAME
CUSTOMER-ADDR
CUSTOMER-CITY
CUSTOMER-STATE
CUSTOMER-ZIPCODE
CUSTOMER-CLASS
CUSTOMER-CR-CODE
CUSTOMER-CR-LIM
CUSTOMER-BRANCH BRANCH

Relation: PRODUCT (PROD) Type: Independent Entity

Columns Primary key Foreign relation

PRODUCT-CODE Y
PRODUCT-DESC
PRODUCT-WH-QNTY
PRODUCT-PRICE
PRODUCT-GROUP

Examples of derived view definitions

RDM Administration Guide 77

Base views
Base views that represent “base relations” describe conceptual schema
information. The DBA can define base views with the DBAID utility (see
“Maintaining the RDM” on page 103 and “Managing views with the DBAID
commands” on page 133) or Directory Maintenance. The access sets for
the base views for the example database are shown following. Using
these access statements, RDM optimizes the physical navigation path.

♦ Base View: REGION

 View Text:
> DEFINE REGION

> 0100 KEY REGION-NO

> 0200 REGION-NAME

> 0300 ACCESS E$RG WHERE REGION-NO = REGION-NO ALLOW ALL

> * To restrict deletions of REGIONS that contain branches, code:

> 0500 ACCESS E$BR WHERE BRANCH-REGION = REGION-N0

♦ Base View: BRANCH

 View Text:
> DEFINE REGION

> 0100 KEY BRANCH-NO

> 0200 BRANCH-NAME

> 0300 REQ BRANCH-REGION = BRANCH-REGION = REGION-NO

> 0400 BRANCH-SLS-QUOTA

> 0500 BRANCH-STF-QUOTA

> 0600 DEL-ROUTE

> 0700 BRANCH-ADDR

> 0800 BRANCH-CITY

> 0900 BRANCH-STATE

> 1000 BRANCH-ZIPCODE

> 1100 ACCESS E$BR WHERE BRANCH-NO = BRANCH-NO ALLOW ALL

> * To verify that BRANCH-REGION contains a valid region on

> * INSERTs and UPDATEs, code:

> 1200 ACCESS E$RG ONCE WHERE REGION-NO = BRANCH-REGION

> * To restrict deletions of branches containing customers, code:

> 1300 ACCESS E$CU WHERE CUSTOMER-BRANCH = BRANCH-NO

> * To restrict deletions of branches that have stock, code:

> 1400 ACCESS E$SK WHERE STOCK-BRANCH = BRANCH-NO

Chapter 4 Defining and using derived views

78 P26-8220-64

♦ Base View: STOCK

 View Text:
> DEFINE STOCK

> 0100 KEY STOCK-BRANCH = STOCK-BRANCH = BRANCH-NO

> 0200 KEY STOCK-PRODUCT = STOCK-PRODUCT = PRODUCT-CODE

> 0300 STOCK-QNTY

> 0400 STOCK-BIN-LOC

> 0500 STOCK-YTD-SLS

> 0600 ACCESS E$SK WHERE STOCK-BRANCH = STOCK-BRANCH

> 0700 AND STOCK-PRODUCT = STOCK-PRODUCT ALLOW ALL

> * To verify that STOCK-BRANCH contains a valid branch on

> * INSERTs, code:

> 0800 ACCESS E$BR ONCE WHERE BRANCH-NO = STOCK-BRANCH

> * To verify that STOCK-PRODUCT contains a valid product code

> * on INSERTs, code:

> 0900 ACCESS E$PD ONCE WHERE PRODUCT-CODE = STOCK-PRODUCT

♦ Base View: CUSTOMER

 View Text:
> DEFINE CUSTOMER

> 0100 KEY CUSTOMER-NO

> 0200 CUSTOMER-CR-CODE

> 0300 CUSTOMER-CR-LIM

> 0400 REQ CUSTOMER-BRANCH = CUSTOMER-BRANCH = BRANCH-NO

> 0500 CUSTOMER-ADDR

> 0600 CUSTOMER-NAME

> 0700 CUSTOMER-CLASS

> 0800 ACCESS E$CU WHERE CUSTOMER-NO = CUSTOMER-NO

> 0900 ALLOW ALL

> * To verify that CUSTOMER-BRANCH contains a valid branch on

> * INSERTs and UPDATEs, code:

> 1000 ACCESS E$BR ONCE WHERE BRANCH-NO = CUSTOMER-BRANCH

Examples of derived view definitions

RDM Administration Guide 79

♦ Base View: PRODUCT

 View Text:
> DEFINE PRODUCT

> 0100 KEY PRODUCT-CODE

> 0200 PRODUCT-WH-QNTY

> 0300 PRODUCT-PRICE

> 0400 PRODUCT-DESC

> 0500 ACCESS E$PD WHERE PRODUCT-CODE = PRODUCT-CODE

> 0600 ALLOW ALL

> * To restrict deletions of products that contain stock, code:

> 0700 ACCESS E$SK WHERE STOCK-PRODUCT = PRODUCT-CODE

Derived views
You can use the base views from the previous illustration to derive other
views. The derived views may contain columns from the base views and
columns from several other views, and may have different update
options. The following three examples show increasing complexity when
defining derived view access definitions.

Example 1. This example creates a new view which is a subset of the
BRANCH base view, and excludes the BRANCH-SLS-QUOTA and
BRANCH-STF-QUOTA columns.

Derived View: BRANCH-SUBSET

View Text:
> DEFINE BRANCH-SUBSET

> 0100 KEY BRANCH-NO

> 0200 BRANCH-NAME

> 0300 REQ BRANCH-REGION

> 0400 BRANCH-DEL-ROUTE

> 0500 BRANCH-ADDR

> 0600 BRANCH-CITY

> 0700 BRANCH-STATE

> 0800 BRANCH-ZIPCODE

> 1000 ACCESS BRANCH WHERE BRANCH-NO = BRANCH-NO

> 1100 ALLOW UPDATE

Chapter 4 Defining and using derived views

80 P26-8220-64

The following figure shows the base view and the number of columns it
contains, and the derived view including the number of columns used
from the base view. It also shows the update options specified for the
derived view.

 BRANCH-SUBJECT

 8 columns update only

 BRANCH

 10 columns

Derived ViewBase View

This view can be used by users restricted from seeing the two quota
fields. When defining this view, you do not have to enter all of the access
statements that provide the integrity constraints, nor must you rewrite this
view if the physical file for the BRANCH relation were broken apart or put
into another file with a different name.

The KEY indicator is required to indicate the column RDM is to use as the
logical key for this view. BRANCH-REGION does not have to be REQ in
this view, but the base view only returns and accepts non-null, valid data
for the column. Also, if you use REQ, you can validate the required
column in the derived view, possibly avoiding the need for restoring the
database.

Examples of derived view definitions

RDM Administration Guide 81

Example 2. The process becomes more complex when using several
base views to build a single derived view. This example combines the
REGION and BRANCH views into a composite, listing the branches
within a region.

Derived View: BRANCHES-IN-REGION

View Text:
> DEFINE BRANCHES-IN-REGION

> 0100 KEY REGION-NO

> 0200 REGION-NAME

> 0300 KEY BRANCH-NO

> 0400 BRANCH-NAME

> 0500 ACCESS REGION WHERE REGION-NO = REGION-NO

> 0600 ACCESS BRANCH WHERE BRANCH-REGION = REGION-NO

The following figure shows the base views and the number of columns in
each, and the derived view including the number of columns used from
each base view. It also shows the updating options allowed for the
derived view.

Derived ViewBase Views

 REGION

 2 columns

 BRANCH

 10 columns

 BRANCH-IN-REGION

 2 columns read only

 2 columns read only

In addition to using two views to create a third view, this example
changes the updating options for the REGION and BRANCH views.
Even though REGION and BRANCH are updateable, the
BRANCHES-IN-REGION view is read only. When accessing a base view
with a derived view, you can make view update capability more
restrictive, but not less restrictive. For example, if the BRANCH base
view did not have an ALLOW statement in its access set, it would not
allow updates regardless of the ALLOW statements coded on the derived
views using it.

Chapter 4 Defining and using derived views

82 P26-8220-64

Example 3. This example lists all the products in stock in a region. The
derived view accesses four base views for each row, and allows the user
to perform different updating options on several of the base views. The
following figure shows the base views and the number of columns in
each, the derived view including the number of columns used from each
base view, and the updating options specified.

Derived View: PRODUCTS-IN-REGION

View Text:
> DEFINE PRODUCTS-IN-REGION

> 0100 KEY REGION-NO

> 0200 REGION-NAME

> 0300 KEY BRANCH-NO

> 0400 BRANCH-NAME

> 0500 KEY STOCK-PRODUCT

> 0600 PRODUCT-DESC

> 0700 ACCESS REGION WHERE REGION-NO = REGION-NO

> 0800 ALLOW UPDATE DELETE

> 0900 ACCESS BRANCH WHERE BRANCH-REGION = REGION-NO

> 1000 ALLOW ALL

> 1100 ACCESS STOCK WHERE STOCK-BRANCH = BRANCH-NO AND

> 1200 STOCK-PRODUCT = STOCK-PRODUCT

> 1300 ALLOW ALL

> 1400 ACCESS PRODUCT WHERE PRODUCT-CODE = STOCK-PRODUCT

Examples of derived view definitions

RDM Administration Guide 83

Derived ViewBase Views

 BRANCH

 10 columns

 REGION

 2 columns

 STOCK

 5 columns

 PRODUCT

 4 columns

 BRANCH-IN-REGION

 2 columns update and
 delete options

 2 columns all update
 options

 1 column all update
 options

 1 column read only

Chapter 4 Defining and using derived views

84 P26-8220-64

Processing derived views
Before you can use the RDML commands GET, INSERT, UPDATE, and
DELETE, the derived view must open the base view. Applications do not
explicitly open a base view; it is opened on first use. This may require
parsing the view definition, reading a bound version of the view, or finding
the view in the global view area. In any case, the view’s internal data
structure must be provided to execute the RDML commands. When
using derived views, opening a derived view results in opening one or
more base views.

For example, when you open the PRODUCTS-IN-REGION derived view,
the REGION, BRANCH, STOCK, and PRODUCT base views are also
opened. In combination, these views can affect every file in your physical
database. After you open all of the views, you can process the RDML
commands.

Processing the GET command
When you issue a GET for the BRANCHES-IN-REGION view (see
example 2 in “Derived views” on page 80), RDM issues a GET for the
REGION base view which causes a request to the E$RG file. If this
operation returns data for the REGION base view, RDM issues a GET for
the BRANCH base view. The second GET results in a sweep of the
E$BR file searching for records with the correct region number. The
following figure shows the processing sequence.

BRANCHES-IN-REGION

REGION

BRANCH

1st
GET

2nd
GET

 PDM

 REGN
 DATA
 SET

BRAN
DATA

 SET

Processing derived views

RDM Administration Guide 85

Processing the INSERT command
This example uses the PRODUCTS-IN-REGION derived view to insert a
new product into the stock of a branch in a given region.

Derived View: PRODUCTS-IN-REGION

View Text:
> DEFINE PRODUCTS-IN-REGION

> 0100 KEY REGION-NO

> 0200 REGION-NAME

> 0300 KEY BRANCH-NO

> 0500 BRANCH-NAME

> 0600 KEY STOCK-PRODUCT

> 0700 PRODUCT-DESC

> 0800 ACCESS REGION ALLOW UPDATE DELETE

> 0900 ACCESS BRANCH WHERE BRANCH-REGION = REGION-NO

> 1000 ALLOW ALL

> 1100 ACCESS STOCK WHERE STOCK-BRANCH = BRANCH-NO

> 1200 ALLOW ALL

> 1300 ACCESS PRODUCT ONCE WHERE PRODUCT-CODE = STOCK-PRODUCT

Because the access statements containing the REGION and PRODUCT
views do not allow INSERT, the REGION-NO and STOCK-PRODUCT
values must exist in the database before the INSERT can succeed. This
view does allow for the insertion of new branches and stock into a branch
without any restriction. The only reason to include the PRODUCT
relation in this view is to provide the PRODUCT-DESC field. The integrity
constraint between the STOCK and PRODUCT relations (no
STOCK-PRODUCT number allowed which is not already in PRODUCT)
is already defined in the base views.

Chapter 4 Defining and using derived views

86 P26-8220-64

5
Maintaining referential integrity

Referential integrity ensures that two pieces of data representing the
same fact do not become inconsistent. You can set up your base views
to maintain referential integrity. This chapter describes referential
integrity using the following terms:

♦ Foreign key. A data field (a column or combination of columns) in
one relation that can contain only values found in the primary key of
another relation.

♦ Primary key. A data field (a column or combination of columns) that
uniquely identifies a row in a relation. A primary key may have
multiple foreign keys associated with it.

♦ The source relation. A file or relation that contains the foreign key
as a data field and whose records refer to primary key values in
another relation.

♦ The target relation. A file or relation that contains the primary key
values that match the foreign key values in the source relation.

The terms source relation and target relation are relative and only
express the relationship between two relations at a time.

The following figure shows the relationship between a source relation and
a target relation. Values in foreign-key-a in the source relation must first
exist in primary-key-a in the target relation.

RDM Administration Guide 87

primary-key-a

primary-key-b

.

. . . foreign-key

Target relation:

Source relation:

The examples in this chapter showing how RDM maintains referential
integrity use the relations shown in the following figure.

BRANCH-NO

BRANCH-NAME

BRANCH-ADDR

BRANCH-CITY

BRANCH-STATE

BRANCH-REGION

CUSTOMER-NO

CUSTOMER-NAME

CUSTOMER-ADDR

CUSTOMER-CITY

CUSTOMER-STATE

CUSTOMER-BRANCH

REGION-NO

REGION-NAME

REGN BRAN CUST

Pkey Pkey

Fkey Fkey

These relations have the following foreign keys:

♦ CUSTOMER-BRANCH is a foreign key from CUST to BRAN. E$CU
is the source file. E$BR is the target file.

♦ BRANCH-REGION is a foreign key from BRAN to REGN. E$BR is
the source file. E$RG is the target file.

Chapter 5 Maintaining referential integrity

88 P26-8220-64

Integrity rules and checking
RDM supports the following referential integrity rules:

♦ A foreign key value must exist in the target relation as a primary key.
A primary key value must exist for each foreign key value in a source
relation.

♦ Null values are allowed for a foreign key.

RDM checks for referential integrity in the following ways:

♦ Foreign key value integrity. When you insert or update a record
containing a foreign key, the foreign key value must point to a valid
primary key in the target relation or must be null. This operation is
bypassed if the foreign key is null. This rule also applies if the foreign
key consists of several key parts. RDM performs INSERT or
UPDATE integrity only if none of the key parts is null.

♦ Deletion integrity. RDM does not permit a record to be deleted
unless you first delete or nullify all foreign keys. This means that you
cannot delete a primary key unless you also delete or nullify records
in a source relation that contain the key value in a foreign key.

Integrity rules and checking

RDM Administration Guide 89

Foreign key value integrity
To enforce foreign key value integrity, define the foreign key in the base
view. You may define a required foreign key or a foreign key that allows
nulls. To define a foreign key, you must:

♦ Make the foreign key required or identified by FKEY and redundant to
the primary key in the target relation. For example:
REQ REGION-NO = BRANCH-REGION = REGION-NO

 or

FKEY REGION-NO = BRANCH-REGION = REGION-NO

♦ Access the target relation through its primary key by using the foreign
key value from a source relation. For example:
ACCESS E$BR ALLOW INSERT UPDATE

ACCESS E$RG ONCE WHERE REGION-NO = BRANCH-REGION

If you use FKEY, BRANCH-REGION must be valid or null. If you use
REQ or any qualifier other than FKEY, BRANCH-REGION (the foreign
key) must be valid and non-null.

The rules for defining a foreign key are:

♦ The foreign key may consist of one or more fields. The parts of the
foreign key do not have to be contiguous in the source file. The
foreign key parts must all come from the same physical file.

♦ You must use all the parts of the foreign key to access the target
relation through its primary key. The foreign key parts must provide
the full primary key. The source relation has a one-to-one or
many-to-one relationship with the target relation. You must not
specify additional selection criteria (using the WHERE clause) on any
columns in the target relation.

♦ In the column definition for each column of the foreign key, the
column must have a qualifier (REQ, FKEY, or other) and must be
made redundant with the equivalent part of the primary key.

♦ Express all integrity constraints in base views. You must not use the
FKEY qualifier in derived views. Refer to the SUPRA Server PDM
RDM PDM Support Supplement (OS/390 & VSE), P26-8221, or the
SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222, for information on coding base views.

A foreign key defined with REQ cannot be null.

Chapter 5 Maintaining referential integrity

90 P26-8220-64

Insertion integrity
When you attempt an insert on a relation that contains a foreign key,
RDM ensures that after the insert, the foreign key points to a valid
primary key in the target relation or that the foreign key is null. A foreign
key can be null only if you specify FKEY in its column definition. If you
insert a non-null foreign key value and the primary key in the target
relation does not exist, you can have RDM perform one of two actions:

♦ Reject the insert. You do this by not coding ALLOW INSERT or
ALLOW ALL in the access definition for the target relation. (In these
examples, E$CU is the source; E$BR is the target.) RDM returns a
column status indicator (ASI) of V for the foreign key column(s) and
returns a function status indicator (FSI) of D or X. (See “Modifying
user data” on page 49 for explanations of FSI values.) For example:
> 0100 KEY CUSTOMER-NO

> 0200 FKEY BRANCH-NO = CUSTOMER-BRANCH = BRANCH-NO

> 0300 ACCESS E$CU

> 0400 ALLOW INSERT

> 0500 ACCESS E$BR ONCE WHERE BRANCH-NO = CUSTOMER-BRANCH

♦ Automatically insert the primary key in the target relation. You do this
by coding ALLOW INSERT or ALLOW ALL in the access definition
for the target relation. For example:
> 0100 KEY CUSTOMER-NO

> 0200 FKEY CUSTOMER-BRANCH = CUSTOMER-BRANCH = BRANCH-NO

> 0300 ACCESS E$CU

> 0400 ALLOW ALL

> 0500 ACCESS E$BR ONCE WHERE BRANCH-NO = CUSTOMER-BRANCH

> 0600 ALLOW INSERT

Foreign key value integrity

RDM Administration Guide 91

If you have automatic insert of a new primary key, you can require
validation of another foreign key in the automatically added row. In this
case, you must also define the second foreign key. For example:
> 0100 KEY CUSTOMER-NO

> 0200 FKEY CUSTOMER-BRANCH = CUSTOMER-BRANCH = BRANCH-NO

> 0300 FKEY REGION-NO = BRANCH-REGION = REGION-NO

> 0400 ACCESS E$CU

> 0500 ALLOW ALL

> 0600 ACCESS E$BR ONCE WHERE BRANCH-NO = CUSTOMER-BRANCH

> 0700 ALLOW INSERT

> 0800 ACCESS E$RG ONCE WHERE REGION-NO = BRANCH-REGION

If you insert a customer record with a BRANCH-NO that does not exist,
RDM inserts a branch record. However, before inserting the branch,
RDM checks that REGION-NO points to an existing region record. If not,
the insert fails. By placing ALLOW INSERT on the region relation, you
can also make RDM perform automatic inserts on the region relation.

You can cause a foreign key to be null with an INSERT or UPDATE
either by placing an N into the ASI for the foreign key column(s) or by
supplying the actual null value; RDM does not perform INSERT
referential integrity in this case as primary keys cannot be null. You can
have a null foreign key only if you specify FKEY in the column definition in
the view definition.

Cincom does not recommend inserting the actual null value because the
application is then dependent on the null value.

Chapter 5 Maintaining referential integrity

92 P26-8220-64

Update integrity
When you update a foreign key, RDM ensures that after the update, the
foreign keys point to a valid primary key in the target relation or that the
foreign key is null. If you update the foreign key value to a non-null value
and the primary key in the target relation does not exist, you can have
RDM perform one of two actions:

♦ Reject the update. You do this by coding neither ALLOW INSERT
nor ALLOW ALL in the access definition for the target relation. RDM
returns a column status indicator (ASI) of V for the foreign key
column(s) and returns a function status indicator (FSI) of D or X.
(See “Modifying user data” on page 49 for explanations of FSI
values.) For example:
> 0100 KEY CUSTOMER-NO

> 0200 FKEY CUSTOMER-BRANCH = CUSTOMER-BRANCH = BRANCH-NO

> 0300 ACCESS E$CU

> 0400 ALLOW UPDATE

> 0500 ACCESS E$BR ONCE WHERE BRANCH-NO = CUSTOMER-BRANCH

♦ Automatically insert the primary key in the target relation. You do this
by coding ALLOW INSERT or ALLOW ALL for the target relation.
For example:
> 0100 KEY CUSTOMER-NO

> 0200 FKEY CUSTOMER-BRANCH = CUSTOMER-BRANCH = BRANCH-NO

> 0300 ACCESS E$CU

> 0400 ALLOW UPDATE

> 0500 ACCESS E$BR WHERE BRANCH-NO = CUSTOMER-BRANCH

> 0600 ALLOW INSERT

If the view defines other foreign keys in the automatically inserted target
relation, then insert integrity rules apply on the insertion. For example:
> 0100 KEY CUSTOMER-NO

> 0200 REQ BRANCH-REGION = BRANCH-REGION = REGION-NO

> 0300 REQ CUSTOMER-BRANCH = CUSTOMER-BRANCH = BRANCH-NO

> 0400 ACCESS E$CU

> 0500 ALLOW INSERT

> 0600 ACCESS E$BR ONCE WHERE BRANCH-NO = CUSTOMER-BRANCH

> 0700 ALLOW INSERT UPDATE

> 0800 ACCESS E$RG ONCE WHERE REGION-NO = BRANCH-REGION

Foreign key value integrity

RDM Administration Guide 93

You can also specify updating on the target relation. For example, in the
following view you could update both CUSTOMER-NAME and
BRANCH-NAME. You could not update CUST-NO because it is a
primary key, and you cannot update primary keys.
> 0100 KEY CUSTOMER-NO

> 0200 CUSTOMER-NAME

> 0300 BRANCH-NAME

> 0400 REQ BRANCH-NO = CUSTOMER-BRANCH = BRANCH-NO

> 0500 ACCESS E$CU

> 0600 ALLOW UPDATE

> 0700 ACCESS E$BR WHERE BRANCH-NO = CUSTOMER-BRANCH

> 0800 ALLOW UPDATE

In this example, if you update the foreign key field BRANCH-NO, the
update processing positions the branch file on the record pointed to by
the new foreign key value. This means that any update to
BRANCH-NAME would apply to the branch record the new foreign key
value points to, not the BRAN record retrieved by the GET before the
update. Use care if you allow updating on both the source relation and
the target relation.

You can allow both INSERTs and UPDATEs for the target relation. This
means RDM can update the target relation if the primary key already
exists or insert the primary key if it does not exist.

You can cause a foreign key to be null with an INSERT or UPDATE
either by placing an N into the ASI for the foreign key column(s) or by
supplying the literal null value; RDM does not perform INSERT referential
integrity in this case as primary keys cannot be null. You can have a null
foreign key only if you specify FKEY in the column definition in the view
definition.

Cincom recommends using an N in the ASI rather than supplying the
literal null value. N in the ASI is independent of the column’s data type
and independent of the column’s defined null value, if any.

Chapter 5 Maintaining referential integrity

94 P26-8220-64

GET processing
If a foreign key is defined as required and redundant, a GET RDML
command must retrieve data from both the source relation and the target
relation. This means that if an existing foreign key in the database is not
valid, a view with the field defined as a foreign key is unable to retrieve
the bad record. RDM returns an “occurrence not found” message
because required data cannot be retrieved from the target relation; that
is, the source foreign-key and the target primary-key must have the same
value.

In the case of a null foreign key, RDM does not perform a GET on the
target relation because a null primary key is not allowed.

When selecting with key values, always issue the first GET command in
this manner:
GET FIRST * USING value-1

Issue any subsequent GETs with the same key value in this manner:
GET NEXT * USING value-1

Whenever the selection value changes, issue the GET command in this
manner:
GET FIRST * USING value-2

When you use other positional qualifiers with GET, such as SAME,
PRIOR, or LAST, you may get different results for different underlying
physical file types. Also, some positional keywords are not legal for some
physical file types.

Foreign key value integrity

RDM Administration Guide 95

Deletion integrity
RDM does not allow you to delete a record unless you first delete or
nullify all foreign keys. This means that you cannot delete a primary key
if records containing foreign keys with the same value exist. To define
delete referential integrity, you must access the source relation through
its foreign key using the full primary key. For example:
> 1000 ACCESS E$RG WHERE REGION-NO = REGION-NO
> 1100 ALLOW DELETE
> 1200 ACCESS E$BR WHERE BRANCH-REGION = REGION-NO

If the foreign key consists of multiple parts, you must access the source
relation using all its parts. For example:
> 1000 ACCESS E$RG WHERE REGION-NO-SUB1 = REGION-NO-SUB1
> 1100 AND REGION-NO-SUB2 = REGION-NO-SUB2
> 1200 AND REGION-NO-SUB3 = REGION-NO-SUB3
> 1300 ALLOW DELETE
> 1400 ACCESS E$BR WHERE BRANCH-REGION-SUB1 = REGION-NO-SUB1
> 1500 AND BRANCH-REGION-SUB2 = REGION-NO-SUB2
> 1600 AND BRANCH-REGION-SUB3 = REGION-NO-SUB3

You must not supply additional selection criteria on the WHERE clause
for data fields in the source relation because RDM would use this
additional criteria when checking the source relation.

For performance reasons, Cincom recommends that you index the
foreign key. If the foreign key has multiple parts, include all the parts in
the secondary key. An index is important because the source relation is
not usually accessed through its primary key. If you try to delete a
primary key, and foreign keys of the same value still exist in the source
relation, you can have RDM perform one of three actions:

♦ Delete the referencing records (Cascade delete). Do this by coding
ALLOW DELETE in the access definition for the source relation. If
no attributes come from the source relation, RDM deletes all
occurrences of the foreign key in the source relation. If attributes
come from the source relation, RDM deletes only one occurrence in
the source relation. RDM deletes the primary key in the target
relation when the delete causes the deletion of the last referencing
record.

 When multiple relations depend on the source relations, RDM
performs a cascade delete on all specified relations and leaves the
source record if any “restrict” records exist.

♦ Reject the delete (Restrict delete). Do this by not coding ALLOW
DELETE in the access definition for the source relation.

♦ Nullify the referencing foreign keys (Nullify delete) by specifying
ALLOW UPDATE in the access definition for the source relation.

Chapter 5 Maintaining referential integrity

96 P26-8220-64

To enforce referential integrity during a delete operation, use one of the
following options:

♦ Cascade delete

♦ Restrict delete

♦ Nullify delete

Cincom does not recommend that you specify Cascade delete or Nullify
delete when the target relation and the source relation reside on different
physical platforms (the source relation represents a SUPRA PDM file and
the ref relation represents a native KSDS VSAM file). A delete operation
across platforms may not be recoverable.

Cascade delete
When you perform a delete operation on a view, you must also delete all
referencing rows (based on the foreign key). The following is an example
of a cascade delete:
> 1000 ACCESS E$RG WHERE REGION-NO = REGION-NO ALLOW DELETE

> 1100 ACCESS E$BR WHERE BRANCH-REGION = REGION-NO ALLOW DELETE

> 1200 ACCESS E$CU WHERE CUSTOMER-BRANCH = BRANCH-NO ALLOW DELETE

This example deletes a region, then all branches for the region, and all
customers for the branches being deleted.

Restrict delete
A delete operation fails if any referencing rows (based on the foreign key)
exist. The following is an example of a restrict delete:
> 1000 ACCESS REGN WHERE REGION-NO-SUB1 = REGION-NO-SUB1

> 1100 AND REGION-NO-SUB2 = REGION-NO-SUB2

> 1200 AND REGION-NO-SUB3 = REGION-NO-SUB3

> 1300 ALLOW DELETE

> 1400 ACCESS BRCH WHERE BRANCH-REGION-SUB1 = REGION-NO-SUB1

> 1500 AND BRANCH-REGION-SUB2 = REGION-NO-SUB2

> 1600 AND BRANCH-REGION-SUB3 = REGION-NO-SUB3

Foreign key value integrity

RDM Administration Guide 97

Nullify delete
When RDM performs a delete, it deletes the primary key but nullifies the
foreign key. Follow these rules to nullify a foreign key:

♦ Specify ALLOW UPDATE in the access definition for the source
relation; you must not specify ALLOW DELETE for the source
relation.

♦ Access the source relation joining on the foreign key and the primary
key from the target relation.

♦ Ensure that the source relation supplies no columns.

♦ Specify ALLOW DELETE for the target relation.

♦ Set the Nulls Allowed flag for the foreign key column to Y.

The following is an example of a base view you can use to delete the
primary key record and nullify the foreign key. In this example, you are
deleting the region and placing null values in the BRANCH-REGION
columns for the branches contained in the region. The ALLOW DELETE
indicates you may delete the region. The ALLOW UPDATE on the
Branch relation, BRAN, indicates you may nullify the BRANCH-REGION
column.
> 0100 KEY REGION-NO

> 0200 REGION-NAME

> 0300 ACCESS E$RG WHERE REGION-NO = REGION-NO

> 0400 ALLOW DELETE

> 0500 ACCESS E$BR WHERE BRANCH-REGION = REGION-NO

> 0600 ALLOW UPDATE

Chapter 5 Maintaining referential integrity

98 P26-8220-64

Referential integrity examples
Example 1. This view does not add a branch unless the region already
exists. It does not allow updating REGION-NO in BRANCH unless the
new value points to an existing region.
> 0100 KEY BRANCH-NO

> 0200 BRANCH-ADDRESS

> 0300 BRANCH-CITY

> 0400 BRANCH-STATE

> 0500 REQ REGION-NO = BRANCH-REGION = REGION-NO

> 0600 ACCESS E$BR

> 0700 ALLOW INSERT UPDATE

> 0800 ACCESS E$RG ONCE WHERE REGION-NO = BRANCH-REGION

Notice that the foreign key in the BRANCH file (E$BR) is redundant with
the primary key in the REGION file (E$RG), and the REGION file is
accessed by its primary key with the foreign key value.

Example 2. This view accesses CUSTOMER (E$CU), then BRANCH
(E$BR), then REGION (E$RG). It permits updates and inserts to the
CUSTOMER file, and updates only to the BRANCH file. It allows no
updates or deletes on the REGION file.
> 0100 KEY CUSTOMER-NO

> 0200 CUSTOMER-NAME

> 0300 REQ BRANCH-NO = CUSTOMER-BRANCH = BRANCH-NO

> 0400 BRANCH-NAME

> 0500 REQ REGION-NO = BRANCH-REGION = REGION-NO

> 0600 REGION-NAME

> 0700 ACCESS E$CU

> 0800 ALLOW UPDATE INSERT

> 0900 ACCESS E$BR WHERE BRANCH-NO = CUSTOMER-BRANCH

> 1000 ALLOW UPDATE

> 1100 ACCESS E$RG WHERE REGION-NO = BRANCH-REGION

An INSERT RDML command can insert a new customer, but to do so the
column BRANCH-NO must point to an existing branch. You can
UPDATE the customer (E$CU) and branch (E$BR) files. If you do an
update on the column BRANCH-NO, the new foreign key value must
already exist in BRANCH. Also, updating the new key value repositions
the branch file before making the update to BRANCH-NAME.

Referential integrity examples

RDM Administration Guide 99

Example 3. This example shows how updating a foreign key can affect
the positioning of the subsequent target relations.
> 0100 KEY CUSTOMER-NO

> 0200 CUSTOMER-NAME

> 0300 REQ CUSTOMER-BRANCH = CUSTOMER-BRANCH = BRANCH-NO

> 0400 BRANCH-NAME

> 0500 REQ BRANCH-REGION = BRANCH-REGION = REGION-NO

> 0600 REGION-NAME

> 0700 ACCESS E$CU WHERE CUSTOMER-NO = CUSTOMER-NO

> 0800 ALLOW UPDATE

> 0900 ACCESS E$BR WHERE BRANCH-NO = CUSTOMER-BRANCH

> 1000 ACCESS E$RG WHERE REGION-NO = BRANCH-REGION

> 1100 ALLOW UPDATE

A GET on this example returned a row with the following column values:
CUSTOMER-NO = 11111

CUSTOMER-NAME = GEORGE

CUSTOMER-BRANCH = 1000

BRANCH-NAME = BRANCH 1000

BRANCH-REGION = 100

REGION-NAME = REGION 100

If the application updated the column and you issued an RDML UPDATE
command, the result is:
CUSTOMER-NO = 11111

CUSTOMER-NAME = GEORGE WILSON

CUSTOMER-BRANCH = 5000

BRANCH-NAME = BRANCH CHANGE

BRANCH-REGION = 100

REGION-NAME = WESTERN REGION updates to CUSTOMER-NAME
and CUSTOMER-BRANCH are applied as indicated. However, the
changes to CUSTOMER-BRANCH cause a repositioning of the BRANCH
file to the key value of 5000.

Even though the view contains redundant foreign keys, the ALLOW
phrase on the source relation controls whether you can update a foreign
key. In the example, you cannot update BRANCH-REGION because
there is no ALLOW UPDATE on the E$BR file. Even though there is an
ALLOW UPDATE on E$RG, and REGION-NO is redundant in
BRANCH-REGION, it does not mean you can update
BRANCH-REGION.

Chapter 5 Maintaining referential integrity

100 P26-8220-64

Example 4. This view allows deleting a region if there are no associated
branches:
> 0100 KEY REGION-NO

> 0200 REGION-NAME

> 0300 ACCESS E$RG WHERE REGION-NO = REGION-NO

> 0400 ALLOW DELETE

> 0500 ACCESS E$BR WHERE BRANCH-REGION = REGION-NO

Notice that the source file BRANCH (E$BR) is accessed through its
foreign key (BRANCH-REGION) using the primary key (REGION-NO).

Example 5. This view allows deleting branches, so you can delete the
region record. If no columns from the BRANCH (E$BR) file exist in the
user view, then deleting a region deletes all branches referencing the
region. If there are columns from BRANCH in the user view, the program
must delete each row by using a GET DELETE loop or by using DELETE
ALL.
> 0100 KEY REGION-NO

> 0200 REGION-NAME

> 0300 ACCESS E$RG WHERE REGION-NO = REGION-NO

> 0400 ALLOW DELETE

> 0500 ACCESS E$BR WHERE BRANCH-REGION = REGION-NO

> 0600 ALLOW DELETE

Referential integrity examples

RDM Administration Guide 101

Example 6. This view is an example of combining insert, update, and
delete integrity in one view. This view allows maintenance on the
BRANCH (E$BR) file. However, foreign keys restrict maintenance
operations.
> 0100 KEY BRANCH-NO

> 0200 BRANCH-NAME

> 0300 BRANCH-ADDR

> 0400 BRANCH-CITY

> 0500 BRANCH-STATE

> 0600 REQ BRANCH-REGION = BRANCH-REGION = REGION-NO

> 0700 ACCESS E$BR

> 0800 ALLOW ALL

> * Access to E$RG is for insert integrity.

> 0900 ACCESS E$RG WHERE REGION-NO = BRANCH-REGION

> * Access to E$CU is for delete integrity.

> 1000 ACCESS E$CU WHERE CUSTOMER-BRANCH = BRANCH-NO

You cannot perform an insert on BRANCH (E$BR) unless the foreign key
value in BRANCH-REGION already exists as a key value in the REGION
(E$RG) file. You cannot update BRANCH-REGION unless the key value
already exists in the REGION file. You cannot perform a delete on
BRANCH unless you first delete all referencing records in the customer
file.

Chapter 5 Maintaining referential integrity

102 P26-8220-64

6
Maintaining the RDM

The physical and logical design of your database changes as data
requirements change. This chapter discusses changes that impact your
views and application program design, and explains how to maintain,
fine-tune, and modify your RDM system to accommodate changes and to
optimize performance.

RDM Administration Guide 103

Defining and testing views with DBAID
Using the DBAID utility to experiment with the various DBAID commands
is a good way to learn how RDM works.

It is important to define and test your views to ensure they work correctly
before putting them into production use. Using DBAID, an online and
batch utility (see “Managing views with the DBAID commands” on
page 133), you can define a new view without affecting the Directory,
open the view, issue RDML commands, and examine the results. You
can then modify the view, if necessary. A base view does not need to be
defined on the Directory before a derived view can access it. A base
view need only be open (not saved) to be accessed.

You can use DBAID to perform a variety of tasks: relate views to users,
gather statistics on a view, save the view, and so on. As soon as you
save the view, it is available to application programs, unless a bound
version of the view exists (see “View binding” on page 125). You can
also take existing views from the Directory, change and test them to see
if they still work, all without affecting the views stored on the Directory.

Users other than the DBA can use a limited number of DBAID
commands. These commands allow the application programmer to use
the DBAID utility when constructing programs that use views.
Programmers can use the limited DBAID commands to see how the
views perform and to determine how to design the application based on
the data.

The identity of the signed-on user invokes the programmer’s DBAID
commands. If the user is a DBA, as defined in the Directory, then DBAID
recognizes all commands. However, if the signed-on user is not a DBA,
only the limited DBAID commands are available. The application
programmer cannot define new views or edit existing views. The
programmer can access only views that are related to the programmer’s
(user) ID in the Directory and can access only the data available through
those views.

Refer to the SUPRA Server PDM RDM COBOL Programming Guide
(OS/390 & VSE), P26-8330, or the SUPRA Server PDM RDM PL/1
Programming Guide (OS/390 & VSE), P26-8331, for more information
about the DBAID commands available to the application programmer.

The following examples illustrate a sample session of the DBAID utility in
an online environment. You can execute the DBAID utility in a batch
environment.

Chapter 6 Maintaining the RDM

104 P26-8220-64

Signing on to DBAID and RDM
At the sign-on screen, enter your user ID and password.

The Cincom Software Selection screen appears. Select DBAID from the
list.

 CINCOM SOFTWARE SELECTION MENU nnn n

ENTER SELECTION INFORMATION:
:
* TO EXECUTE WITH CURRENT USER-ID, PRESS ENTER.
* TO EXECUTE WITH ALTERNATE USER-ID, PRESS PF2/PF14

NAME DESCRIPTION

1 DBAID DBAID
2 NORMAL NORMAL
3 SPECTRA SPECTRA
4 MANTIS MANTIS PROGRAM DEVELOPMENT
5 DIRECTRY SUPRA ONLINE DIRECTORY MAINTENANCE
6 INTACTIV INTERACTIVE SERVICES
7 RESIGNON CHANGE USER-ID AND PASSWORD FOR NEXT CALL
8 CONTROL C:M AND C:F PROGRAM PACKAGE
PF1/PF13=HELP PA2/PA1=EXIT

If you do not use the Software Selection menu, you must use the
SIGN-ON command to sign-on to RDM. The > symbolizes the system
prompt. In the following examples, any data following the > is user input.
WELCOME TO DBAID - LEVEL nnnn

> SIGN-ON user-id password

FSI: * VSI: = MSG: SUCCESSFUL COMPLETION - LEVEL nnnn

If you do not use the Software Selection menu and you sign on with a
user ID that begins with an asterisk (**PUBLIC**), you must enclose the
user ID in single quotes.

Defining and testing views with DBAID

RDM Administration Guide 105

Defining base views
This example shows the definition of a view. First, define three base
views; then define a derived view using those base views.

The first base view to define is the REGION-BASE-VIEW. The numbers
next to the prompt are line numbers used for editing in DBAID. The LIST
command tells DBAID that you want to display the newly defined view.
Using an asterisk (*) after a command is a shortcut and tells DBAID that
you want to use the most recent view-name again. An * in column one of
a line signifies that this is a comment line.
> DEFINE REGION-BASE-VIEW

> 0100 KEY REGION-NO

> 0200 REGION-NAME

> 0300 ACCESS E$RG WHERE REGION-NO = REGION-NO ALLOW ALL

> 0400 * RESTRICT DELETION OF A REGION THAT HAS BRANCHES

> 0500 ACCESS E$BR WHERE BRANCH-REGION = REGION-NO

> LIST *

DBAID displays the view definition:
 REGION-BASE-VIEW

0100 KEY REGION-NO

0200 REGION-NAME

0300 ACCESS E$RG WHERE REGION-NO = REGION-NO ALLOW ALL

0400 * RESTRICT DELETION OF A REGION THAT HAS BRANCHES

0500 ACCESS E$BR WHERE BRANCH-REGION = REGION-NO

To access the view, you must use the OPEN command. The FSI
indicates that the OPEN was successfully completed. The VSI message
indicates how much space was used in opening the view:
> OPEN *

FSI: * VSI: = MSG: 1448 BYTES USED IN OPENING VIEW.

Chapter 6 Maintaining the RDM

106 P26-8220-64

Next, define BRANCH-BASE-VIEW:
> DEFINE BRANCH-BASE-VIEW

> 0100 KEY BRANCH-NO

> 0200 BRANCH-NAME

> 0300 BRANCH-ADDR

> 0400 BRANCH-CITY

> 0500 BRANCH-STATE

> 0600 BRANCH-ZIPCODE

> 0700 BRANCH-DEL-ROUTE

> 0800 BRANCH-SLS-QUOTA

> 0900 BRANCH-STF-QUOTA

> 1000 REQ BRANCH-REGION = BRANCH-REGION = REGION-NO

> 1100 ACCESS E$BR WHERE BRANCH-NO = BRANCH-NO ALLOW ALL

> 1200 * REJECT INSERT AND UPDATE OF BRANCH-REGION IF REGION NOT
VALID

> 1300 ACCESS E$RG ONCE WHERE REGION-NO = BRANCH-REGION

> 1400 * REJECT DELETION OF A BRANCH THAT HAS CUSTOMERS

> 1500 ACCESS E$CU WHERE CUSTOMER-BRANCH = BRANCH-NO

> LIST *

Defining and testing views with DBAID

RDM Administration Guide 107

The LIST command on the previous screen returns the following view.
Remember to issue an OPEN command for the view.
 BRANCH-BASE-VIEW

0100 KEY BRANCH-NO

0200 BRANCH-NAME

0300 BRANCH-ADDR

0400 BRANCH-CITY

0500 BRANCH-STATE

0600 BRANCH-ZIPCODE

0700 BRANCH-DEL-ROUTE

0800 BRANCH-SLS-QUOTA

0900 BRANCH-STF-QUOTA

1000 REQ BRANCH-REGION = BRANCH-REGION = REGION-NO

1100 ACCESS E$BR WHERE BRANCH-NO = BRANCH-NO ALLOW ALL

1200 * REJECT INSERT AND UPDATE OF BRANCH-REGION IF REGION NOT
VALID

1300 ACCESS E$RG ONCE WHERE REGION-NO = BRANCH-REGION

1400 * REJECT DELETION OF A BRANCH THAT HAS CUSTOMERS

1500 ACCESS E$CU WHERE CUSTOMER-BRANCH = BRANCH-NO

> OPEN *

FSI: * VSI: = MSG: 4344 BYTES USED IN OPENING VIEW.

On the next screen, define the CUST-BASE-VIEW and LIST it:
> DEFINE CUST-BASE-VIEW

> 010 KEY CUSTOMER-NO

> 020 CUSTOMER-NAME

> 030 CUSTOMER-ADDR

> 040 CUSTOMER-CITY

> 050 CUSTOMER-STATE

> 060 CUSTOMER-ZIPCODE

> 070 CUSTOMER-CLASS

> 080 CUSTOMER-CR-CODE

> 090 CUSTOMER-CR-LIM

> 100 REQ CUSTOMER-BRANCH = CUSTOMER-BRANCH = BRANCH-NO

> 110 ACCESS E$CU WHERE CUSTOMER-NO = CUSTOMER-NO ALLOW ALL

> 120 * REJECT INSERT AND UPDATE OF CUSTOMER-BRANCH IF BRANCH
INVALID

> 130 ACCESS E$BR ONCE WHERE BRANCH-NO = CUSTOMER-BRANCH

> LIST *

Chapter 6 Maintaining the RDM

108 P26-8220-64

The LIST * command returns the view as entered, which must be opened
in order to use it:
 CUST-BASE-VIEW

0010 KEY CUSTOMER-NO

0020 CUSTOMER-NAME

0030 CUSTOMER-ADDR

0040 CUSTOMER-CITY

0050 CUSTOMER-STATE

0060 CUSTOMER-ZIPCODE

0070 CUSTOMER-CLASS

0080 CUSTOMER-CR-CODE

0090 CUSTOMER-CR-LIM

0100 REQ CUSTOMER-BRANCH = CUSTOMER-BRANCH = BRANCH-NO

0110 ACCESS E$CU WHERE CUSTOMER-NO = CUSTOMER-NO ALLOW ALL

0120 * REJECT INSERT AND UPDATE OF CUSTOMER-BRANCH IF BRANCH
INVALID

0130 ACCESS E$BR ONCE WHERE BRANCH-NO = CUSTOMER-BRANCH

> OPEN *

FSI: * VSI: = MSG: 3952 BYTES USED IN OPENING VIEW.

Defining and testing views with DBAID

RDM Administration Guide 109

Defining a derived view
On the next screen, design a sample derived view using the base views
from above:
> DEFINE SAMPLE-DERIVED-VIEW

> 010 KEY CUSTOMER-NO

> 020 CUSTOMER-NAME

> 030 KEY BRANCH-NO = CUSTOMER-BRANCH = BRANCH-NO

> 040 BRANCH-NAME

> 050 KEY REGION-NO = BRANCH-REGION = REGION-NO

> 060 REGION-NAME

> 070 ACCESS CUST-BASE-VIEW WHERE CUSTOMER-NO = CUSTOMER-NO ALLOW
ALL

> 080 ACCESS BRANCH-BASE-VIEW WHERE BRANCH-NO = CUSTOMER-BRANCH

> 090 ALLOW ALL

> 100 ACCESS REGION-BASE-VIEW WHERE REGION-NO = BRANCH-REGION

 ALLOW ALL

> LIST *

The LIST * command on the screen above returns the following view:
 SAMPLE-DERIVED-VIEW

0010 KEY CUSTOMER-NO

0020 CUSTOMER-NAME

0030 KEY BRANCH-NO = CUSTOMER-BRANCH = BRANCH-NO

0040 BRANCH-NAME

0050 KEY REGION-NO = BRANCH-REGION = REGION-NO

0060 REGION-NAME

0070 ACCESS CUST-BASE-VIEW WHERE CUSTOMER-NO = CUSTOMER-NO ALLOW
ALL

0080 ACCESS BRANCH-BASE-VIEW WHERE BRANCH-NO = CUSTOMER-BRANCH

0090 ALLOW ALL

0100 ACCESS REGION-BASE-VIEW WHERE REGION-NO = BRANCH-REGION ALLOW
ALL

Chapter 6 Maintaining the RDM

110 P26-8220-64

Retrieving records
The next screen shows how to retrieve records using the
SAMPLE-DERIVED-VIEW. First, issue the OPEN command to access
the view. DBAID returns status codes and messages and the next
prompt.

For this example, retrieve the first five records. Use the GO command to
retrieve records. (To retrieve one record at a time, use the GET
command.)
> OPEN *

FSI: * VSI: = MSG: 11060 BYTES USED IN OPENING VIEW.

> GO * FOR 5

The following screen shows the five records retrieved, followed by
completion messages:

CUSTOMER-NO CUSTOMER-NAME BRANCH-NO BRANCH-NAME REGION-NO REGION-NAME

D11127 ED DILLON 1264 FLORENCE 444 MID-ATLANTIC

PAID PAID THROUGH A/R 0000 DUMMY 000 MAIN WAREHOUSE

S70703 TIM MARTIN 1273 BURNHAM 555 NEW ENGLAND

CASH CASH TRANSACTION 0000 DUMMY 000 MAIN WAREHOUSE

S41197 JOHN ADAMS 1234 THE FARM 111 GREAT LAKES

FSI: * VSI: + MSG: SUCCESSFUL COMPLETION

Defining and testing views with DBAID

RDM Administration Guide 111

Inserting records
To do an INSERT using the SAMPLE-DERIVED-VIEW, enter the
INSERT command at the prompt. The example uses an * instead of the
view name. DBAID prompts you for the input. If you enter any values
longer than the field length, DBAID truncates the value.
> INSERT *

CUSTOMER-NO

> C12345

CUSTOMER-NAME

> ATLANTIS

BRANCH-NO

> 1241

BRANCH-NAME

> OAKLEY

REGION-NO

> 222

REGION-NAME

> SOUTH-EASTERN

When you have completed entering the record, DBAID returns a screen
showing the values you keyed in, then asks if you want to do this insert.
If you have entered an incorrect value, respond with N (no) at the prompt
and enter the correct information. In the example, respond with a Y (yes)
to complete the INSERT.
CUSTOMER-NO () C12345

CUSTOMER-NAME () ATLANTIS

BRANCH-NO () 1241

BRANCH-NAME () OAKLEY

REGION-NO () 222

REGION-NAME () SOUTH-EASTERN

INSERT (Y/N)?

> Y

If you have entered any incorrect values, DBAID returns the records with
messages regarding their validity:
CUSTOMER-NO (+) C12345

CUSTOMER-NAME (+) ATLANTIS

BRANCH-NO (+) 1241

BRANCH-NAME (+) OAKLEY

REGION-NO (+) 222

REGION-NAME (+) SOUTH-EASTERN

If all entries are correct, DBAID displays a successful completion
message:
FSI: * VSI: + MSG: SUCCESSFUL COMPLETION

Chapter 6 Maintaining the RDM

112 P26-8220-64

Updating a row
To update a row, first issue the GET command to access the row in the
view. In this example, you would access the first row with a key of
C12345.
> GET * USING C12345

DBAID displays the row; use the UPDATE command to indicate that you
want to modify the row.
CUSTOMER-NO (+) C12345
CUSTOMER-NAME (+) ATLANTIS
BRANCH-NO (+) 1241
BRANCH-NAME (+) OAKLEY
REGION-NO (+) 222
REGION-NAME (+) SOUTH-EASTERN
> UPDATE *

For this example, change the CUSTOMER-NAME to Atlantic. At the
system prompt, key in the new data. DBAID then prompts you for
additional changes to BRANCH and REGION. Press ENTER at any
prompts where you want to skip ahead without entering data.
CUSTOMER-NO
CUSTOMER-NAME
> ATLANTIC
BRANCH-NO
BRANCH-NAME
>
REGION-NO
REGION-NAME

> DBAID displays the row again, with the change, and asks if you want to
complete the update. The FSI and VSI status codes indicate that the
request was completed successfully.
CUSTOMER-NO (+) C12345
CUSTOMER-NAME (+) ATLANTIC
BRANCH-NO (+) 1241
BRANCH-NAME (+) OAKLEY
REGION-NO (+) 222
REGION-NAME (+) SOUTH-EASTERN
UPDATE (Y/N)?
> Y
FSI: * VSI: + MSG: SUCCESSFUL COMPLETION

This example applies only to online DBAID. In batch DBAID you cannot
skip fields you do not want to change in this manner. See the description
of the UPDATE command in “Managing views with the DBAID
commands” on page 133 for details.

Defining and testing views with DBAID

RDM Administration Guide 113

Modifying a view definition
To modify a view definition, first issue the RELEASE command to release
the open views. To display all views currently active in DBAID, use the
VIEWS command.

For the example, modify the SAMPLE-DERIVED-VIEW.
> RELEASE

FSI: * VSI: = MSG: SUCCESSFUL COMPLETION

> LIST SAMPLE-DERIVED-VIEW

0010 KEY CUSTOMER-NO

0020 CUSTOMER-NAME

0030 KEY BRANCH-NO = CUSTOMER-BRANCH = BRANCH-NO

0040 BRANCH-NAME

0050 KEY REGION-NO = BRANCH-REGION = REGION-NO

0060 REGION-NAME

0070 ACCESS CUST-BASE-VIEW WHERE CUSTOMER-NO = CUSTOMER-NO ALLOW ALL

0080 ACCESS BRANCH-BASE-VIEW WHERE BRANCH-NO = CUSTOMER-BRANCH

0090 ALLOW ALL

0100 ACCESS REGION-BASE-VIEW WHERE REGION-NO = BRANCH-REGION ALLOW ALL

Determine which lines to change. In this example, delete line 60 and
change line 90. This will delete the REGION-NAME from the view and
restrict deletions.
> 060

> 090 ALLOW INSERT UPDATE

The view definition has been changed. To see how the row format was
affected, issue an OPEN command to open the view, then issue a GO.
> OPEN *

FSI: * VSI: = MSG: 10732 BYTES USED IN OPENING VIEW.

GO * FOR 2

DBAID returns the first two rows according to the modified view.
REGION-NAME no longer appears in the table because you deleted it.

CUSTOMER-NO | CUSTOMER-NAME | BRANCH-NO | BRANCH-NAME | REGION-NO

CASH | CASH TRANSACTION | 0000 | DUMMY | 000

E40000 | DOUG REED | 1241 | OAKLEY | 222

FSI: * VSI: + MSG: SUCCESSFUL COMPLETION

When you have finished using DBAID, use the BYE command to exit:
> BYE

 DBAID SESSION COMPLETE

Chapter 6 Maintaining the RDM

114 P26-8220-64

Maintaining current programs and views
RDM insulates application programs from many changes to the physical
database. However, as data requirements change and you modify the
database, you may need to modify your views or application programs.
These changes may require you to change your program logic and
recompile the program, or modify and rebind your views.

Two RDM reports aid you in determining the impact of changes to your
views and programs due to changes in your physical database
implementation:

♦ Views Used by Programs Report. Shows the programs that use a
particular view.

♦ Impact of Change Report. Shows the views that use a particular
physical field.

With these reports, you can determine the views or programs that may be
affected by a change. See “Using the RDM reports” on page 211 for
more information about RDM reports.

Maintaining current programs and views

RDM Administration Guide 115

The table on the following pages shows actions you may need to take if
you make file changes, physical changes, or logical changes.

Changes to files include changing a file type. Usually, RDM insulates
application programs from these types of changes while you modify and
rebind the view.

Physical changes, such as changing the characteristics of a column in a
view, may require a change to the program logic and recompilation. You
need to recompile only the programs that use the column in their user
view. You must also modify and rebind the view.

Logical changes include changing the relationships between data. For
example, changing a one-to-one relationship to a one-to-many
relationship usually requires that you change the program logic to
process the new relationship. You must also modify and rebind the view.

If the RDM eligible flag is not set to Y on the Directory for the secondary
key, an OPEN or a BIND will receive the message “Index not available to
RDM.”

If the RDM eligible flag is set to Y but the secondary key is not populated,
an OPEN or a BIND will receive the message “Secondary Key not
populated.” Adding or deleting indexes, secondary keys, or linkpaths
may change the behavior of unbound views. RDM selects the access
strategy at view open time and adding secondary keys or indexes may
alter this selection. If you want a bound view to take advantage of a
newly defined index or secondary key, you must first rebind the view.

Chapter 6 Maintaining the RDM

116 P26-8220-64

Change
program
logic

Re-
compile
program

Modify
view
defn

Rebind
view

Unload/
reload
DB

None

File changes
Add a new file X X X
KSDS file into
PDM file

 X X X

PDM file to a
KSDS file

 X X X

Combine 2 files
into 1

 X X X

Delete a file if
contains field for
view

X X X X X

Rename file X X X
Split 1 file into
several

 X X X

Change a PDM
file type

 X X

Change a record
type

 X

Change the
linkpath location

 X

Change the
physical key
length

 X

Change the base
length of a
variable record

 X

Change the key
position in a
parent record

 X

Change a field
heading

 X

Add or remove an
index or
secondary key

 X

Maintaining current programs and views

RDM Administration Guide 117

Change
program
logic

Re-
compile
program

Modify
view
defn

Rebind
view

Unload/
reload
DB

None

Physical changes
Add new fields to
a record

 X

Change Field
length

X * X Y X X

Change Field type X * X Y X
of decimal
places

X * X Y X

Physical field’s
location

 X X X

Delete a field from
physical record if
used by view and
program X

X X X X

Rename a
physical field if
field used in view

 X X

Change edit
mask/translate
table

 X

Change null value
or nulls allowed

 X

Change default
value

 X

Change validation
type

 X

Change validation
data

(Range, table
name, exit)

 X

Change validation
table

 X

* Does not apply to MANTIS programs.

Chapter 6 Maintaining the RDM

118 P26-8220-64

Change
program
logic

Re-
compile
program

Modify
view
defn

Rebind
view

Unload/
reload
DB

None

Logical changes
Add columns and
include in view

 X

Add new columns
to a view

 X

External field’s
type

X X X

External field’s
length

X X X

Unique key to a
nonunique

X X X X

Change
relationships

Program depends
on relationship

X X X X

Define a new view X
Delete a field or
column

 X X

Program uses field
or column

X X

Move a column in
a row

 X

Rename a column
Program uses
column on Include

X X

Reorder columns X X
Other changes
Installation of new
RD Service Level
Release

 X

* Does not apply to MANTIS programs.
Y If a constant column maps to the field in question.

Maintaining current programs and views

RDM Administration Guide 119

Checking currentness of program
RDM has several checks to ensure that the program you are running is
current and that the user view it uses is the same as other applications in
the system. When an application program issues an RDML command,
RDM checks to see if the columns in the view, as defined in the
Directory, are the same as when you last compiled the program. If not,
RDM returns an FSI status code, and you must recompile the program.

Application systems are often composed of several separately compiled
programs that depend on common definitions of data items. These
programs call each other to perform special tasks. RDM checks on each
RDML call to make sure that the definition of the user view is the same
for each program. If you compile a program or subroutine with the same
user view name as another program or subroutine and the user view
definition does not match, RDM generates an error message. The field
list generated by the RDML compiler at compile time contains the data
used to perform this error checking.

Checking currentness of view bindings
RDM uses the bound copy of a view whenever possible. However, RDM
does not warn you if the bound view you are using is out of date. It is up
to you to rebind your view whenever necessary. See the table under
“Maintaining current programs and views” on page 115 for a list of
reasons for rebinding a view.

Chapter 6 Maintaining the RDM

120 P26-8220-64

Optimizing performance
This section describes techniques for optimizing your system
performance:

♦ “Global view support” on page 122 describes global view support,
which allows you to have certain views opened at system
initialization, thereby improving the performance of opening the view.

♦ “View binding” on page 125 describes view binding, which allows you
to store an opened version of a view on the Directory, thereby
improving the performance of opening the view.

♦ “Installing the RDM resident module in shared memory” on page 126
describes storing the RDM resident module in shared memory, so
that multiple applications can use the same copy and conserve
program memory.

Optimizing performance

RDM Administration Guide 121

Global view support
Global view support allows you to have certain views opened during RDM
initialization. By doing this, you can save RDM the processing overhead
of opening views when first accessed by the application program. You
define which views are global in the Directory (see the following
example). A global view is available to all users related to that view.

You can make both base and derived views global. However, before you
make a derived view global, you should make global each view the
derived view accesses.

Batch RDM does not open global views. Global view support is available
for CICS and IMS/DC users only.

Specify which views are global using Directory Maintenance. List the
view names in the long text area for the Environment Description entity.
Put each view name on a separate line with this syntax:
GLOBAL view-name

Here is an example of an Online Directory Maintenance screen with
global views specified:

 DIRECTORY MAINTENANCE ENVDES: LONG EDIT
SCHEMA: DEMOSCHM
LAST UPDATE 11.09.16. 04/01/91 V.0001 USER: THOMAS

ENTER EDITOR COMMAND: AD SEQ1: BEG. SEQ2/INCR: 100

0100 GLOBAL CUSTOMERS
0200 GLOBAL PRODUCTS
0300 GLOBAL CUSTOMER-PRODUCTS
0400 GLOBAL PRICES
0500 GLOBAL CUSTOMER-POS

Refer to the SUPRA Server PDM Directory Online User’s Guide (OS/390
& VSE), P26-1260, or the SUPRA Server PDM Directory Batch User’s
Guide (OS/390 & VSE), P26-1261, for detailed instructions for specifying
global views with Directory Maintenance.

Chapter 6 Maintaining the RDM

122 P26-8220-64

During initialization of RDM, RDM opens all global views in the system’s
memory space. For each global view, RDM displays a message on the
console in the following format:
 CSIV114I GLOBAL VIEW: view-name
FSI: * nnnn BYTES USED IN OPENING VIEW.

The amount of memory used to open a global view is the same as the
amount of memory used to bind the view. If the view is already bound,
you can use Directory reports to determine the memory requirements.
The total amount used is displayed in the following format:

CSIV117I GLOBAL VIEWS OPENED; STORAGE USED IS nnnnK When
using a global view, the user view requires less memory in the heap. The
RDM user’s context is one heap plus one stack; the heap and the stack
are not contiguous, and the stack is only in storage for the duration of an
RDML command. “Setting the online RDM options with macros” on page
261 tells how to specify the numbers and sizes of heaps and stacks.
Refer to the SUPRA Server OS/390 Installation Guide, P26-0149, or the
SUPRA Server VSE Installation Guide, P26-0132 for RDM memory
requirements and usage for your operating environment. For a
discussion of the relationships between RDM parameters and other
SUPRA Server parameters, see “Configuring the RDM for your
environment” on page 225.

The amount of reduction in heap memory is the same as the amount of
memory used to open the global view. For example, suppose a user
view requires 3K to open when the view is not global. The 3K are all
allocated in the heap. When the view is made global, it requires 2K to
open during global initialization. The 2K are allocated in the global area
so when the application programmer opens the user view, only 1K are
required in the heap. If multiple users open the user view, each requires
1K in their heap. They would all share the 2K allocated in the global
area.

Optimizing performance

RDM Administration Guide 123

Because global views allow you to reduce the heap size, the savings in
memory (because there are many heaps) may more than offset the
amount of memory used by global views.

Global views also reduce the processing required to open a user view
because opening the user view requires no Directory access. Even if the
view is bound, global views significantly reduce the processing required
to open the user view. For security checking, RDM keeps a table of
global views that a task has previously been allowed to open. When
opening a global view, RDM checks the table before performing directory
I/Os to validate the user’s ability to use the view. In many cases this
means that no I/Os are required to open a global view. This can improve
performance greatly when global views are repeatedly released and
reopened. One table is kept per task. The table contains 32 entries and
is reset at a SIGN-ON or SIGN-OFF.

You can decide which views are to be global views by determining
frequency of use and size of the views. If a view requires a relatively
large amount of memory and/or is accessed frequently, then include the
view in the global view area. Once you open a global view, it cannot be
released. You can use DBAID to create virtual copies of a global view
and open and release the copies, but this does not affect application
programs. No new definitions of views that are placed in the global area
take effect until you shut down the RDM system and reinitialize. Refer to
the SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452, for information on commands that allow
RDM to be stopped and restarted without having to cycle your CICS
system.

The view you place in the global area may or may not be bound. The
bound views improve performance only during the global opens
performed during RDM initialization. They have no impact on opens
performed for application programs. Because bound views require so
much maintenance, it is usually better not to bind views that are also
global.

Chapter 6 Maintaining the RDM

124 P26-8220-64

View binding
Binding a view means translating the view definition into a form that RDM
can use easily. The translated definition is the bound view. The bound
view is stored in addition to the view definition text.

Binding a view reduces the processing necessary on the initial access to
a view. When you open a bound view, RDM does not parse the view
definition text. Cincom suggests you use view binding only for production
systems and where the physical database is stable. This is because
bound base views must be rebound when the physical database
changes, and bound derived views must be rebound whenever the base
view changes.

You can bind views by issuing the BIND command or the SAVE
command in DBAID. Refer to “Managing views with the DBAID
commands” on page 133 for information about DBAID commands.

You can bind existing views and rebind existing bound views with the
DBAID command BIND:

♦ BIND view-name. Bind a view without saving it.

♦ BIND BOUND. Rebind all currently bound views.

♦ BIND ALL. Bind or rebind each view in the schema. The BIND ALL
command takes a long time to complete and may fill your Directory
because it creates bound copies of all your views.

If a bound version of a view is available, RDM applications always use it.
If a bound view is not available, RDM applications use the view definition
text. You can change the view definition text without affecting any
applications until you rebind the view. Only after you rebind the view
does it become available to application programs. To remove a view
definition and a view’s binding, use the DBAID command REMOVE. To
guard against errors in using this command, you can remove only views
which are also virtual views, that is, views that have been listed first.
Even after you remove a view, you still have a copy of the view as a
virtual view. You only lose this virtual view if you undefine the view (using
the UNDEFINE command) or enter BYE, terminating the DBAID session.
To keep the view, issue the SAVE command before terminating the
session.

Optimizing performance

RDM Administration Guide 125

The DBA Report lists the time of the last binding as well as the last time
the text was updated. From this report you can determine whether the
view text differs from the text used in producing the binding. The End
User Report and the Programmer’s Report use the view definition text
instead of the view bindings. It is a good practice to rebind the view
whenever you change the view text.

The table under “Maintaining current programs and views” on page 115
shows which changes to your physical database or base views require
you to rebind your views.

Installing the RDM resident module in shared memory
You can install the major portion of RDM, the resident module
(CSVLVRES or CSVNVRES), in a shared memory area. This allows
multiple users to use the same copy of the resident module and conserve
memory.

Installation in the LPA under OS/390/XA
Under OS/390, you can install the resident modules into the linkpack area
(LPA), but the resulting memory savings may have no practical benefit.
The online resident module CSVNVRES is always loaded in extended
memory (above the 16 MB line); saving extended memory is probably not
significant. The batch resident module CSVLVRES is used in batch jobs,
where memory is probably not at a premium.

The resident modules CSVLVRES and CSVNVRES are already linked as
reentrant. To install them into the LPA, move the modules from the
SUPRA Server link library into SYS1.LPA. After your next IPL, the
modules reside in the linkpack area.

If you move CSVNVRES to the LPA in a CICS environment, you may
require an application load table (DFHALT) entry in your CICS tables,
depending on your site’s requirements.

Chapter 6 Maintaining the RDM

126 P26-8220-64

Installation in the SVA under VSE
Under VSE, you can install the resident module CSVLVRES (batch) or
CSVNVRES (CICS) into the shared virtual area (SVA). These modules
have already been linked using the link deck CSVLVRES or CSVNVRES
and marked as shared virtual area (SVA) eligible.

If you do not want these modules to be SVA-resident, RDM loads them
into the VSE GETVIS area. If you want them to be SVA-resident, load
them in one of two ways:

♦ Add the phase name CSVLVRES or CSVNVRES to your automatic
system initialization (ASI) procedure. The next time you IPL the
system, CSVLVRES or CSVNVRES will be loaded into the SVA.

♦ Submit a VSE pause job to the background partition. Then you can
load CSVLVRES or CSVNVRES into the SVA through the VSE
system console.

The VSE job to implement the second method would be in the following
form:
// DLBL TISLIB,'dsname'
// EXTENT,nnnnnn
LIBDEF CSVNVRES,FROM=TISLIB,SEARCH=TISLIB
SET SDL
CSVLVRES,SVA
CSVNVRES,SVA
/*

where:

dsname Specifies the data set name of the user core image
library containing the phase CSVLVRES or CSVNVRES.

nnnnnn Specifies the volume serial number of the disk containing
the core image library.

SET SDL Indicates that you are building a system directory list (SDL)
entry, listing phases that are SVA-eligible. CSVLVRES, SVA or
CSVNVRES, SVA indicates that the resident module is to be loaded into
the SVA.

The phases CSVLVRES and CSVNVRES are large. Make sure your
SVA is large enough to accommodate these phases in addition to your
other SVA eligible phases.

If CSVNVRES is put into the SVA, you may need to put an application
load table (DFHALT) entry in your CICS tables, depending on your site
requirements.

Optimizing performance

RDM Administration Guide 127

Gathering and interpreting statistics
RDM statistics track the number of RDML requests each user makes and
the number of physical data manager (PDM) requests RDM makes when
processing the user’s RDML requests. These statistics can help indicate
how efficient your views are. Under a teleprocessing monitor, only one
task at a time can print statistics.

Gathering statistics with DBAID
Use the following DBAID commands to gather RDM statistics:

♦ STATS-ON. Initialize statistics to zero. Enable gathering of statistics
on user views on both the logical and physical levels.

♦ PRINT-STATS. Print the current statistics to the DMLPRINT file.

♦ STATS. Display the current statistics online.

♦ STATS-OFF. Disable gathering of statistics.

See “Managing views with the DBAID commands” on page 133 for
specific information about each DBAID command.

Gathering statistics in an application program
You can gather statistics from your application program. To do this,
move one of the following 4-byte codes into the TIS-OPTIONS field in the
TIS-CONTROL-AREA before the RDML call:

♦ SSTA Equivalent to the STATS-ON command

♦ ESTA Equivalent to the STATS-OFF command

♦ PSTA Equivalent to the PRINT-STATS command

Chapter 6 Maintaining the RDM

128 P26-8220-64

Interpreting RDM statistics
RDM prints statistics in a tabular report format. The first part of the report
is a table showing all the open user views and the number of RDML
requests made by the task.

The second part of the report contains a table showing the user view
name and the view used. The table shows which files the view
contained. There is one line in the table for each ACCESS statement in
the view. Each line shows how many requests to the physical data
manager were performed.

There are no hard and fast rules for interpreting RDM statistics. Statistics
vary depending on whether you are penetrating a file or sweeping it.
When you sweep a file, there are more RDM calls to the physical data
manager than when you supply a key value and penetrate a file.

Statistics example
Following is an example showing the statistics gathered during the
sample DBAID session in “Defining and testing views with DBAID” on
page 104:

 > STATS SAMPLE-DERIVED-VIEW
 VIEW NAME GET INSERT UPDATE DELETE

 SAMPLE-DERIVED-VIEW 7 1 0 0

 LVL ACCESS NAME

 0 |CUST-BASE-VIEW 7 1 0 0
 0 |BRANCH-BASE-VIEW 6 0 0 0
 0 |REGION-BASE-VIEW 6 0 0 0

 > STATS-OFF

The statistics report is in two parts. The first part of the report shows that
seven logical GETs were performed on the user view,
SAMPLE-DERIVED-VIEW.

The second part of the report gives the name of the user view and the
views used. In this example, when the CUST-BASE-VIEW was used to
GET seven records, there were seven reads to the CUST-BASE-VIEW,
six reads to the BRANCH-BASE-VIEW, and six reads to the
REGION-BASE-VIEW. One customer record was inserted.

LVL refers to the level of occurrence for the column name. (See the
description of the BY-LEVEL command in “Managing views with the
DBAID commands” on page 133 for more details.)

Gathering and interpreting statistics

RDM Administration Guide 129

Relating views to users
You control the security of the database by defining on the Directory
which users can use which views are related to which users. A user can
use a view only if that view is related to that user or that view is related to
the **PUBLIC** user.

You can relate a view to a user with one of the following:

♦ The DBAID command PERMIT

♦ The DBAID command PUBLIC-PERMIT (to relate a view to the
PUBLIC user)

♦ The Directory Maintenance RELATE command

Whether you use DBAID or Directory Maintenance to create the
relationship, the relationship is stored on the Directory.

You can remove the relationship of a view to a user with one of the
following:

♦ The DBAID command DENY

♦ The DBAID command PUBLIC-DENY (to remove a view’s
relationship to the **PUBLIC** user)

♦ The Directory Maintenance REMOVE command

For information about the DBAID commands, see “Managing views with
the DBAID commands” on page 133. For information about the Directory
Maintenance commands, refer to the SUPRA Server PDM Directory
Online User’s Guide (OS/390 & VSE), P26-1260, or the SUPRA Server
PDM Directory Batch User’s Guide (OS/390 & VSE), P26-1261.

You need not use the same program to remove a relationship that you
used to create it. You can remove a relationship with DBAID whether you
created it with DBAID or not. You can remove a relationship with
Directory Maintenance whether you created it with Directory Maintenance
or not.

Chapter 6 Maintaining the RDM

130 P26-8220-64

You can relate both base and derived views to users. However, you can
relate users to a derived view without authorizing them to use the base
view that the derived view accesses. While the derived view accesses
the base view, it can impose additional security on the user. The
following figure shows BASE-VIEW-A which has all update capabilities.
Brad is related to BASE-VIEW-A while Mary is related to
DERIVED-VIEW-B which accesses BASE-VIEW-A. Mary cannot directly
use BASE-VIEW-A. DERIVED-VIEW-B provides additional security, and
Mary only has read access to the information contained in
BASE-VIEW-A.

 10 columns

 All update
 options

 10 columns

 Read only

Base-View-A Derived-View-B

Users:
 Brad
 Julie

Users:
 Mary
 Sally

Relating views to users

RDM Administration Guide 131

Recovering data
RDM itself provides no recovery. You can recover the data in a physical
file if your physical file manager, teleprocessing monitor, or other
program provides the ability to recover that file. For example, the SUPRA
physical data manager (PDM) provides the ability to recover native PDM
files. CICS provides the ability to recover certain files you define in your
CICS tables.

If you update data on different physical platforms (SUPRA PDM, native
KSDS VSAM) in the same logical unit of work, that set of updates may
not be recoverable as a whole. Partial recovery of a logical unit of work
leaves your data logically inconsistent.

RDM supports access to KSDS VSAM files, but neither SUPRA Server
nor VSAM provides the ability to recover such files.

When the SUPRA PDM is running with Task Level Recovery (TLR), the
RDML COMMIT command, issued by DBAID or by an application, makes
all updates to the PDM database permanent. The RDML RESET
command backs out any database updates since the last COMMIT.

CICS provides Dynamic Transaction Backout (DTB). A COMMIT makes
all updates to the database permanent and takes a CICS sync point. A
RESET backs out any database updates since the last COMMIT but
does not restart the task. Instead, the RESET command performs the
CICS rollback operation and then returns control to the program.

For information on logging and recovery in SUPRA Server, refer to the
SUPRA Server PDM Logging and Recovery Guide (OS/390 & VSE),
P26-2223.

Chapter 6 Maintaining the RDM

132 P26-8220-64

7
Managing views with the DBAID
commands

This chapter introduces the DBAID utility and describes each of the
DBAID commands in alphabetical order.

Introduction to DBAID
With the DBAID utility you can manage views. DBAID provides you with
functions that include the following:

♦ Create, edit, display, open, bind, close, and delete views.

♦ Store views on the Directory.

♦ Remove views from the Directory.

♦ Create, modify, and remove relationships between views and users
on the Directory.

♦ Add, read, update, and delete user data records with views.

♦ Save position information for user data records.

♦ Finalize (commit) or reverse (reset) a series of operations to user
data records.

♦ Set parameters for DBAID output.

♦ Enable, initialize, and disable statistics gathering.

♦ Display information relevant to view management, including statistics,
list of views, list of public views, list of users, list of views for a user,
and list of users for a view.

RDM Administration Guide 133

You can define and manage both base views and derived views with
DBAID. For information on defining derived views, see “Defining and
using derived views” on page 63. For information on defining base views,
see the SUPRA RDM support supplement(s) for the physical data
platform(s) you use:

♦ SUPRA Server PDM RDM PDM Support Supplement (OS/390 &
VSE), P26-8221

♦ SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222

RDM and DBAID provide limited support for positional keywords (SAME,
PRIOR, LAST, etc.) for the GET, GO, and INSERT commands
depending on the physical data platform. The support is limited because
of differences in the platforms and because record position is not a
relational concept. Some positional keywords RDM does not accept for
some platforms. You may get different results for the same keyword for
different platforms. For details, see the SUPRA Server RDM support
supplement(s) for the platform(s) you use.

There are two versions of DBAID: batch DBAID and online DBAID. The
format of the commands are identical in the two versions. The effects of
the commands are identical in the two versions except for the UPDATE
command; see the UPDATE command considerations for details.

Your SUPRA Server libraries contain procedures and job control
language (JCL) samples for running batch DBAID. Samples are subject
to change. See the SUPRA Server JCL library or source statement
library member TXJ$INDX for a list of JCL samples.

OS/390 See the SUPRA Server procedure library member TIS$RDM for a list of
RDM procedures. See the SUPRA Server macro library or source
statement library member TX$$INDX for an index to the different kinds of
samples. For more information on JCL samples, refer to the SUPRA
Server PDM and Directory Administration Guide (OS/390 & VSE),
P26-2250.

Chapter 7 Managing views with the DBAID commands

134 P26-8220-64

Each DBAID command must be coded on a single line or input record.
The command and its operands must fit in the first 72 columns of its line.
A line with an asterisk in the first column is a comment; DBAID ignores
comment lines. DBAID commands are divided into the following
categories:

♦ System commands. Use these to display information about the
DBAID utility currently executing. They display information such as
current users and active views, and they perform functions on the
Directory for you.

♦ Editing commands. Use these to change existing view definitions,
as well as to create new views to test before saving them on the
Directory.

♦ RDML commands. Use these to test data with a defined view to
make sure the view is properly defined.

♦ Built-in view commands. Use these to inspect the view after it is
opened.

♦ Statistics commands. Use these to gather, display, and print
statistics on a particular user area. The following tables list all the
commands by category and gives a brief description.

Introduction to DBAID

RDM Administration Guide 135

System commands

Command Description
BIND Binds a view.
COPY Copies the view definition of one view to another view. Only the

DBA can use this command.
DENY Removes the relationship between a user and a view on the

Directory.
LINESIZE Specifies width of line for DBAID output.
MARKS Lists all open MARKs and the views they are marking.
PAGESIZE Specifies the number of lines on the page/screen for DBAID

output.
PERMIT Relates a view to a user on the Directory.
PUBLIC-DENY Removes the relationship between the view entities and the

PUBLIC user on the Directory.
PUBLIC-PERMIT Relates a view(s) to the **PUBLIC** user on the Directory.
PUBLIC-VIEWS Lists the names and short text for the views related to the

PUBLIC user.
REMOVE Removes the view definition, view bindings, and the relationship

between the view and the schema. Only the DBA can use this
command.

SHOW-NAVIGATION Displays the access strategies RDM uses for entities
(files/views) accessed in open views.

USER-LIST Displays column list for the view named.
VIEWS Displays all views active in DBAID.

Editing commands

Command Description
DEFINE Defines a name for a virtual view. Only the DBA can use this

command.
EDIT Readies a stored or virtual view for modification. Only the DBA can

use this command.
line-number Deletes, adds, or replaces a line in the view you are currently editing.

Only the DBA can use this command.
LIST Lists a stored or virtual view and readies it for modification. Only the

DBA can use this command.
RENUMBER Renumbers a virtual view so that line numbering starts at ten with

each line incremented by ten. Only the DBA can use this command.
UNDEFINE Deletes a defined virtual view.

Chapter 7 Managing views with the DBAID commands

136 P26-8220-64

RDML commands

Command Description
= Reissues the previous RDML command.
BYE Exits the DBAID utility.
CAUTIOUS Prohibits an automatic COMMIT.
COMMIT Makes all updates since last commit

permanent in the database.
DELETE Removes a row from the database.
ERASE Issues an RDM RESET if an X FSI is

returned.
FORGET Frees the storage allocated by a previously

issued MARK command.
GET Retrieves and displays the requested row for

the indicated view.
GO Issues multiple GET commands, and

displays the rows in tabular format.
INSERT Places a row in the physical database based

on relative location specified.
KEEP Prohibits an automatic RESET.
MARK Marks the current position of the view

established by the previous GET.
OPEN Readies either a virtual or stored view for use

by the DBAID utility.
RELEASE Closes one or all views that have been

opened, and releases the occupied storage.
RESET Forces a task level abend and rolls back any

database updates since the last commit.
SIGN-OFF Signs off the user from the DBAID utility.
SIGN-ON Identifies the user to the DBAID utility.
SURE Causes a COMMIT after each successful

insert, update, or delete.
UPDATE Updates data values in the database.

Introduction to DBAID

RDM Administration Guide 137

Built-in view commands

Command Description
BY-LEVEL Displays the column names in the view by

level of occurrence.
COLUMN-DEFN Displays the full description of a column in a

view.
COLUMN-TEXT Displays the short and long text for a column

in a view.
FIELD-DEFN Displays a description of a column in a view.

This information is a subset of the information
returned by COLUMN-DEFN.

VIEW-DEFN Displays a condensed description of the view.
VIEWS-FOR-USER Lists the views related to the signed-on user

and the short text for the view.

Statistic commands

Command Description
PRINT-STATS Prints the current statistics. Only the DBA

can use this command.
STATS Displays the current statistics for all open

views or a particular open view, online. Only
the DBA can use this command.

STATS-OFF Prints the current statistics and then disables
the statistics gathering. Only the DBA can
use this command.

STATS-ON Initializes statistics to zero and then enables
the statistics gathering on user views on both
the logical and physical levels. Only the DBA
can use this command.

Chapter 7 Managing views with the DBAID commands

138 P26-8220-64

= command
The = command reissues the previous RDML command.

=

Example In the following example, = causes another “GET NEXT CUST-PROD-
VIEW.”
GET NEXT CUST-PROD-VIEW

=

= command

RDM Administration Guide 139

BIND command
The BIND command binds or rebinds view(s) that are stored on the
Directory. If there are two versions of a view, a virtual version and a
saved version, BIND will bind the saved version without saving or
affecting the virtual version. The DBA can use the BIND command to
bind a view without also saving it (BIND view-name). The DBA may
rebind all currently bound views (BIND BOUND) or bind all the views in a
schema (BIND ALL).

BIND [schema-name:]



















name-view
BOUND
ALL
*

schema-name:

Description Optional. Identifies the schema in which the view is to be bound.

Format Must be a valid schema defined on the Directory. The schema name
must be followed by a colon.

Consideration If you omit this parameter, DBAID uses the active schema.



















name-view
BOUND
ALL
*

Description Required. Specifies which views to bind.

Format View-name must be the name of an existing saved view.

Options * Bind the view you used most recently.

ALL Bind all views in the schema.

BOUND Rebind all currently bound views in the schema.

view-name Bind the named view.

Chapter 7 Managing views with the DBAID commands

140 P26-8220-64

General considerations

♦ The BIND ALL command takes a long time to complete and may fill
your Directory, because it binds each of your views.

♦ After successfully binding each view, DBAID issues a COMMIT.

♦ If an error occurs while binding a view, DBAID issues a RESET for
that view and continues processing with any remaining views.

♦ You can use this command only if your active environment
description specifies update access to the Directory. For information
on maintaining your environment description, refer to the SUPRA
Server PDM Directory Online User’s Guide (OS/390 & VSE),
P26-1260, or the SUPRA Server PDM Directory Batch User’s Guide
(OS/390 & VSE), P26-1261.

♦ Binding a derived view has no effect on the views it accesses.

♦ You must rebind a derived view after changing a view it accesses.

Example This example binds BRANCH-VIEW. Notice the message indicating how
many bytes were used.
> BIND BRANCH-VIEW

BINDING BRANCH-VIEW

FSI: * VSI: = MSG: 2504 BYTES USED IN VIEW BINDING.

VIEW BINDING SUCCESSFUL

BIND command

RDM Administration Guide 141

BYE command
The BYE command exits the DBAID utility.

BYE

General considerations

♦ In an online environment, the BYE command returns you to the RDM
signon screen or other user-installed menu screens.

♦ In a batch environment, the BYE command terminates the task.

♦ The BYE command erases all unsaved virtual views. Because virtual
views are stored in memory, only those explicitly saved will be stored
on the Directory. Be sure to SAVE any new or altered view
definitions on the Directory before leaving DBAID if you want to keep
them.

♦ If you entered DBAID with the task already signed-on to RDM, the
BYE command does not perform a SIGN-OFF. If you entered DBAID
with the task signed-off from RDM, which requires you to issue a
SIGN-ON, the BYE command performs a SIGN-OFF.

♦ The BYE command prints statistics and then disables them if
statistics are on.

Chapter 7 Managing views with the DBAID commands

142 P26-8220-64

BY-LEVEL command
The BY-LEVEL command displays the column names in a view by level
of occurrence starting with level 0, followed by level 1, and so on. RDM
generates the column number when displaying this data.

BY-LEVEL 







name-view

*
 [column-number]









name-view

*

Description Optional. Specifies the one view whose column names you want to
display.

Format View-name must be the name of an existing, opened view.

Options * Display column names for the view you used most
recently.

view-name Display column names for the named view.

Consideration If you omit this parameter, BY-LEVEL displays all column names for all
your opened views.

column-number

Description Optional. The number of the one column whose name you want to
display.

Format Numeric characters.

Considerations

♦ To use this parameter, you must have specified a view.

♦ If you omit this parameter, the BY-LEVEL command displays all
column names of the indicated view(s).

BY-LEVEL command

RDM Administration Guide 143

Example
> BY-LEVEL

NUMBER VIEW NAME FIELD NAME LEVEL

1 REGN REGION-NO 0

2 REGN REGION-NAME 0

1 BRANCH-VIEW BRANCH-NO 0

2 BRANCH-VIEW BRANCH-NAME 0

3 BRANCH-VIEW BRANCH-ADDR 0

4 BRANCH-VIEW BRANCH-CITY 0

5 BRANCH-VIEW BRANCH-STATE 0

6 BRANCH-VIEW BRANCH-ZIPCODE 0

7 BRANCH-VIEW BRANCH-REGION 0

Chapter 7 Managing views with the DBAID commands

144 P26-8220-64

CAUTIOUS Command
The CAUTIOUS command disables the DBAID automatic COMMIT
facility. This command is the opposite of the SURE command. When
you use CAUTIOUS, DBAID does not automatically issue a COMMIT
when an RDML INSERT, UPDATE, or DELETE command returns an “*”
FSI. Instead, you must issue the COMMIT.

CAUTIOUS

General considerations

♦ DBAID normally issues a COMMIT after every successful RDML
modification. The CAUTIOUS command is not required; however,
you can use it when you want manual control over COMMIT
commands when updating the database.

♦ CAUTIOUS does not affect the COMMIT that system commands
(REMOVE, SAVE, BIND, PERMIT, and DENY) may issue. These
COMMITs must be issued after you modify the Directory.

CAUTIOUS Command

RDM Administration Guide 145

COLUMN-DEFN command
The COLUMN-DEFN command displays the full internal description of
columns in a view.

COLUMN-DEFN 







name-view

*
[column-name]









name-view

*

Description Optional. Specifies the one view whose column descriptions you want to
display.

Format View-name must be the name of an existing, opened view.

Options * Display column descriptions for the view you used most
recently.

view-name Display column descriptions for the named view.

Consideration If you omit this parameter, COLUMN-DEFN displays all column
descriptions for all your opened views.

column-name

Description Optional. Identifies the one column whose description you want to
display.

Format The name of an existing column in the specified view.

Considerations

♦ If you use this parameter, you must have specified a view.

♦ If you omit this parameter, the COLUMN-DEFN command displays
all column descriptions for the indicated view(s).

Chapter 7 Managing views with the DBAID commands

146 P26-8220-64

General consideration

 The information returned by FIELD-DEFN is a subset of the information
returned by COLUMN-DEFN.

Example This example shows a description of one of the columns in the BRAN
view.
> COLUMN-DEFN
VIEW-NAME (+) BRAN
COL-NAME (+) BRANCH-NO
COL-POS (+) 0
COL-LEN (+) 4
COL-ASI-POS (+) 83
COL-DEC (+) 0
COL-OUTP-LEN (+) 4
COL-MASK-LEN (-) 0
COL-FORMAT (+) C
COL-MASK (-)
COL-HEADING (-)
COL-DEL-OPT (+) Y
COL-INS-OPT (+) Y
COL-UPD-OPT (+) N
COL-REDUND (+) N
COL-CONSTANT (+) N
COL-LEVEL (+) 0
COL-KEY-NUM (+) 1
COL-REQUIRED (+) Y
COL-UNIQUE (+) Y
COL-EDIT-TRANS (+)
COL-ORDERING (-)
COL-SIGNED (+) N
COL-NULLS-OK (+) N
COL-NULL-LEN (-) 0
COL-NULL-VAL (-)
COL-DOMAIN (+) DM-BRANCH-IDENTIFIERS
COL-VAL-TYP (+)
COL-GET-VAL (+) N
COL-MIN-LEN (+) 0
COL-MIN-VAL (-)
COL-MAX-LEN (-) 0
COL-MAX-VAL (-)
COL-VAL-TABLE (-)
COL-EXIT (+) --------
COL-SRC-TYP (+) F
COL-SRC-COL (+) BRANCH-NO
COL-SRC-REL (+) E$BRCTRL
COL-INT-REL (+) E$BR
COL-RC (+)

COLUMN-DEFN command

RDM Administration Guide 147

COLUMN-TEXT command
The COLUMN-TEXT command displays the short and long text for a
column in a view. For compatibility purposes, you can use the FIELD-
TEXT command in the same manner as the COLUMN-TEXT command.

COLUMN-TEXT 







name-view

*
[column-name]









name-view

*

Description Optional. Specifies the one view whose column text you want to display.

Format View-name must be the name of an existing, opened view.

Options * Display column text for the view you used most recently.

view-name Display column text for the named view.

Consideration If you omit this parameter, COLUMN-TEXT displays the text for each
column in each of your opened views.

column-name

Description Optional. Identifies the one column for which you want to display the
short and long text.

Format The name of an existing column in the specified view.

Considerations

♦ If you use this parameter, you must have specified a view.

♦ If you omit this parameter, the COLUMN-TEXT command displays
the text for each column in the indicated view(s).

Example This example shows the short and long text describing the BRANCH-
ADDR column in the BRAN view.
> COLUMN-TEXT BRAN BRANCH-ADDR

VIEW NAME COLUMN NAME SHORT TEXT LONG TEXT

BRAN BRANCH-ADDR

BRANCH STREET ADDRESS

Chapter 7 Managing views with the DBAID commands

148 P26-8220-64

COMMIT command
The COMMIT command makes permanent in the database all updates
since the last COMMIT (a logical unit of work).

COMMIT

General considerations

♦ DBAID issues a COMMIT after every successful RDML modification
unless you have issued a CAUTIOUS command. You can use the
COMMIT command to issue a COMMIT if you have issued a
CAUTIOUS command.

♦ The system commands REMOVE, SAVE, BIND, PERMIT, and
DENY issue a COMMIT after successful modification of the
Directory.

♦ The physical action RDM performs for COMMIT, if any, depends on
the physical platform and operating environment.

COMMIT command

RDM Administration Guide 149

COPY command
The COPY command creates a new view with the same definition as an
existing view.

COPY [schema-name:] view-name1 view-name2

schema-name:

Description Optional. Identifies the schema where the view to be copied is defined.

Format Must be a valid schema defined on the Directory. The schema name
must be followed by a colon.

Consideration If you omit this parameter, COPY uses the active schema.

view-name1

Description Required. Identifies the name of the view to copy.

Format Must be a valid view on the Directory for the schema.

view-name2

Description Required. Identifies the new name for the view being copied.

Format 1–30 alphanumeric characters and the special characters # and $. The
first character must be alphabetic or a special character. If the first
character is a special character, the second character must be
alphabetic.

Consideration After copying, DBAID lists the new view (see the LIST command) and
makes it available for editing.

Chapter 7 Managing views with the DBAID commands

150 P26-8220-64

General consideration

 When DBAID performs the COPY command, it first searches for a virtual
view with the name of view-name1. If it does not find this view, DBAID
searches the Directory for the view. Once it finds the view on the
Directory, it creates a virtual view of view-name1. Finally, it copies the
view definition of view-name1 to view-name2, and lists view-name2.

Examples

♦ The following example copies CUSTOMER from the Directory for the
active schema and names it NEW-CUSTOMER. DBAID lists NEW-
CUSTOMER and makes it available for editing.

 > COPY CUSTOMER NEW-CUSTOMER

♦ The following example copies TEST-VIEW from the Directory for the
schema SCHEMAXX and names it PRODUCTION-VIEW:

 > COPY SCHEMAXX: TEST-VIEW PRODUCTION-VIEW

COPY command

RDM Administration Guide 151

DEFINE command
The DEFINE command defines a new view name to DBAID.

DEFINE view-name

view-name

Description Required. Specifies the name to use as a new view name.

Format 1–30 alphanumeric characters and the special characters #, -, and $.
The first character must be alphabetic or a special character. If the first
character is a special character, the second character must be
alphabetic.

General considerations

♦ The DEFINE command does not go to the Directory to retrieve a
view. It creates a virtual view, one that exists only within the DBAID
execution. You can also save a virtual view in the Directory (see the
SAVE command).

♦ Once you have issued the DEFINE command, you can use the line-
number command to begin creating your view.

♦ DBAID terminates DEFINE when it encounters a command other
than the line-number command.

♦ You can change previously defined views with the EDIT command or
list them with the LIST command.

♦ Remove a defined view from DBAID with the UNDEFINE command.
However, if the defined view is open, an UNDEFINE command does
not release the RDM view definition.

Chapter 7 Managing views with the DBAID commands

152 P26-8220-64

DELETE command
The DELETE command removes a row from the database.

DELETE [ALL]








− nameview
*

ALL

Description Optional. Deletes all rows retrieved by automatically generated GET
NEXTs using the logical key specified on the GET command.

Consideration If a program specifies a GET without a USING phrase, DELETE ALL
deletes all rows in the relation. DELETE ALL can have far reaching
effects, so be sure that the prior GET call limits the DELETE to the
desired rows.









− nameview
*

Description Required. Specifies the name of the view for the relation containing the
row(s) to delete.

Format View-name must be the name of an existing, opened view.

Options * Delete rows for the view you used most recently.

view-name Delete rows for the named view.

DELETE command

RDM Administration Guide 153

General considerations

♦ Before performing the DELETE, you must perform a successful GET
command.

♦ Any ASIs resulting from a DELETE have no meaning.

Examples

♦ This example deletes the one row of SAMPLE-VIEW that was
obtained based on the value in KEY1.

 > GET SAMPLE-VIEW USING KEY1

 > DELETE SAMPLE-VIEW

♦ This example deletes all rows in SAMPLE-VIEW:
 > GET SAMPLE-VIEW USING KEY1

 > DELETE SAMPLE-VIEW

 The preceding two DBAID commands have the same effect as the
following COBOL code:
 RETURN.

 GET NEXT SAMPLE-VIEW FOR UPDATE USING KEY1

 NOT FOUND GO TO CONTINUE.

 DELETE SAMPLE-VIEW.

 GO TO RETURN.

 CONTINUE.

Chapter 7 Managing views with the DBAID commands

154 P26-8220-64

DENY command
The DENY command revokes a user’s privilege to use a view. The
command removes the relation between the user and the view entities on
the Directory. This command provides security because it allows the
DBA to define in the Directory who can use a view.












−







 /

−








−
...

,
b*

DENY 21 nameusernameuser
nameview









− nameview
*

Description Required. Specifies the view for which you are denying the user access.

Format View-name must be the name of an existing view.

Options * Deny access to the view you used most recently.

view-name Deny access to the named view.












−







 /

− ...
,
b

21 nameusernameuser

Description Required. The name(s) of the user(s) you are denying access to the
view.

Format Each user-name must be the name of an existing user defined on the
Directory. User names must be separated by a comma or a blank.

General considerations
♦ You can use the DENY command to remove the relationship

between a user and a view, regardless of whether you created the
relationship with Directory Maintenance or the PERMIT command.

♦ After successfully removing the view’s relationship with each user,
DBAID commits the Directory update.

♦ If an error occurs while removing the relationship between the view
and a user, DBAID backs out (resets) the Directory update and
terminates processing of the command.

♦ You can use this command only if your active environment
description specifies update access to the Directory.

DENY command

RDM Administration Guide 155

EDIT command
The EDIT command readies a saved or virtual view for modification.

EDIT [schema-name:]








− nameview
*

schema-name:

Description Optional. Identifies the schema in which the view to be edited is defined.









− nameview
*

Description Required. Identifies the view to be edited.

Format View-name must be the name of an existing view.

Options * Edit the view you used most recently.

view-name Edit the named view.

General considerations

♦ When you issue the EDIT command, the system first searches for a
virtual view. If it does not find it, the system then searches the
Directory.

♦ Once you have issued the EDIT command, you can use the line-
number command to modify your view. When you enter a command
other than a LINE-NUMBER command, DBAID terminates the EDIT.

♦ You enter the EDIT mode automatically after a LIST or DEFINE
command.

♦ The LIST command can display a view before or after editing. The
LIST command automatically issues an EDIT.

♦ EDIT changes exist only within the DBAID execution, but you can
save them on the Directory with the SAVE command.

Chapter 7 Managing views with the DBAID commands

156 P26-8220-64

ERASE command
The ERASE command causes DBAID to issue a RDM RESET if an
RDML command returns an X FSI. This command is the opposite of the
KEEP command.

ERASE

ERASE command

RDM Administration Guide 157

FIELD-DEFN command
The FIELD-DEFN command displays the full description(s) of column(s)
in a view.

FIELD-DEFN 







name-view

*
[column-name]









name-view

*

Description Optional. Specifies the one view whose column descriptions you want to
display.

Format View-name must be the name of an existing, opened view.

Options * Display columns descriptions for the view you used most
recently.

view-name Display columns descriptions for the named view.

Consideration If you omit this parameter, FIELD-DEFN displays all column descriptions
for all your opened views.

column-name

Description Optional. Identifies the one column whose description you want to
display.

Format The name of an existing column in the specified view.

Considerations

♦ If you use this parameter, you must have specified a view.

♦ If you omit this parameter, the FIELD-DEFN command displays all
column descriptions for the indicated view(s).

Chapter 7 Managing views with the DBAID commands

158 P26-8220-64

General consideration

 The information returned by FIELD-DEFN is a subset of the information
returned by COLUMN-DEFN.

Example This example shows a description of all the columns in your opened
views.
> COLUMN-DEFN

VIEW-NAME (+) CUSTOMER

FIELD-NAME (+) CUSTOMER-NO

FIELD-POS (+) 0

FIELD-LEN (+) 6

ASI-POS (+) 83

FIELD-DEC (+) 0

OUTPUT-LEN (+) 6

MASK-LEN (-) 0

FORMAT (+) C

EDIT-MASK (-)

HEADING (-)

DELETABLE (+) Y

INSERTABLE (+) Y

REPLACEABLE (+) N

FIELD-LVL (+) 0

KEY-NUMBER (+) 1

REQUIRED (+) Y

UNIQUE (+) Y

EDIT-TRANS (+)

ORDERING (-)

SIGNED (+) N

MORE

FIELD-DEFN command

RDM Administration Guide 159

FORGET command
The FORGET command frees the storage allocated by a previously
issued MARK command.

FORGET mark-name

mark-name

Description Required. Specifies what mark information should be forgotten.

Format An existing mark name.

Consideration Must be a name you assigned with the MARK command.

General consideration

 Once you have issued a FORGET command, DBAID releases the
indicated mark and you cannot regain it without issuing a new MARK
command.

Chapter 7 Managing views with the DBAID commands

160 P26-8220-64

GET command
The GET command retrieves and displays a row for the indicated view.

[] 






































... USING
 AT

 UPDATEFOR
*

PRIOR
FIRST
SAME
LAST
NEXT

 GET
21 literalliteral

name-mark
name-view

NEXT
LAST
SAME
FIRST
PRIOR























Description Optional. Modifies the order of row retrieval.
Default NEXT If no current position exists, NEXT defaults to FIRST.
Considerations

♦ For a unique key:

GET NEXT Retrieves either the row immediately after the current
row or the first row if no current position exists.

GET LAST Retrieves the last row.
GET SAME Retrieves the latest row if a current position exists.
GET FIRST Retrieves the first row.
GET PRIOR Retrieves either the row immediately before the current

row or the last row if no current position exists.
♦ For a nonunique key:

GET NEXT Retrieves the next row within the generic group.
GET LAST Retrieves the last row.
GET SAME Retrieves the latest row if a current position exists.
GET FIRST Retrieves the first row with the indicated key.
GET PRIOR Retrieves the previous row within the group of

nonuniquely keyed rows.
♦ The effect of the positional keywords varies depending on the

physical data platform. See the discussion of positional keywords at
the beginning of this chapter.

GET command

RDM Administration Guide 161









name-view
*

Description Required. Specifies the view for GET to use.

Format View-name must be the name of an existing, opened view.

Options * GET with the view you used most recently.

view-name GET with the named view.

FOR UPDATE

Description Optional. Locks the physical record(s) associated with the row you are
retrieving. Prevents others from updating those record(s).

Considerations

♦ The FOR UPDATE phrase allows you to perform modifications
dependent on the current contents of the view.

♦ If you do not need to lock the view, issue a GET without the FOR
UPDATE phrase. When you perform the UPDATE or DELETE
function, the automatic hold facility of RDM performs the lock prior to
modifying the row.

♦ FOR UPDATE implies that all physical resources remain locked until
you issue another GET or an INSERT, UPDATE, DELETE, COMMIT,
or RESET.

AT mark-name

Description Optional. Repositions a view previously marked with the MARK
command.

Consideration You cannot use the USING and AT phrases with the same GET
command.

Chapter 7 Managing views with the DBAID commands

162 P26-8220-64

USING literal1 literal2 …

Description Optional. Identifies a value or set of values to be used for a keyed GET.

Format Each literal consists of character, hexadecimal, or numeric data, in one of
the following forms:

 'cccccc' Character data
 x'xxxxxx' Hexadecimal data
 'nnnnnn' Numeric data (with optional quotes)
 nnnnnn Numeric data (without optional quotes)

Considerations
♦ The number of keys specified in the GET statement must be less

than or equal to the number of keys in your specified column list. No
more than nine keys are allowed in one view.

♦ RDM treats any omitted keys as generic keys. The use of generic
keys is a convenient feature for allowing both direct access to a view
and a sequential scan of many rows. RDM will return all occurrences
of a particular unspecified column as long as the other keys are
satisfied.

♦ The order of specified keys in the USING phrase corresponds to the
order of key declarations in your column list.

♦ You must specify a valid and non-null value. RDM validates the
value before any physical I/O takes place.

Examples
♦ This example shows the retrieval of the first row in the CUSTOMER

view.
 > GET CUST

♦ This example shows a keyed GET.
 > GET FIRST CUST USING Z95551

GET command

RDM Administration Guide 163

GO command
The GO command issues a penetration GET request followed by a series
of sweeping GET requests, and displays the rows in tabular format.

[]





























































































...
USING
FROM

 FOR

 AT
PRIOR
FIRST
SAME
LAST
NEXT

 START

*

PRIOR
NEXT

 GO

21 literalliteral

rows=of-number
name-mark

name-view

NEXT
PRIOR









Description Optional. Specifies the GET command modifier to be used in retrievals
after the initial penetration.

Default NEXT

Consideration The effect of the positional keywords varies depending on the physical
data platform. See the discussion of positional keywords at the beginning
of this chapter.









name-view
*

Description Required. Specifies the view for GO to use.

Format View-name must be the name of an existing, opened view.

Options * GO with the view you used most recently.

view-name GO with the named view.

Chapter 7 Managing views with the DBAID commands

164 P26-8220-64































name-mark AT
PRIOR
FIRST
START
LAST
NEXT

 START

Description Optional. Specifies the GET command modifier to use for the initial
penetration of the database.

Default FIRST

Consideration The effect of the positional keywords varies depending on the physical
data platform. See the discussion of positional keywords at the beginning
of this chapter.

FOR number-of-rows

Description Optional. Indicates the maximum number of rows to be returned.

Format Numeric characters

Consideration GET NEXTs repeat until the count is exhausted or until the last view is
retrieved, whichever occurs first.

GO command

RDM Administration Guide 165

...
USING
FROM

21 literalliteral








Description Optional. Identifies a value or set of values to be used for a keyed GET.

Format Either character or numeric data. You must enclose character data that
includes blanks in quotes; numeric data need not be.

Options FROM Use the key values only on the initial penetration; the
scan is unqualified.

USING Use the key values for both the initial penetration and the
subsequent scan.

Considerations

♦ The number of keys specified in the GET statement must be less
than or equal to the number of keys in your specified column list.

♦ RDM treats any omitted keys as generic keys. The use of generic
keys allows for both direct access to a view and a sequential scan of
many rows. RDM returns all occurrences of a particular unspecified
key as long as the other keys are satisfied.

♦ The order of specified keys in the USING phrase corresponds to the
order of key declarations in your column list.

♦ You must specify a valid and non-null value. RDM validates the
value before any physical I/O takes place.

Chapter 7 Managing views with the DBAID commands

166 P26-8220-64

General considerations
♦ RDM displays the output in columns. To display more data than will

fit on a screen/page, use an alternate format.

♦ After the GO command displays a page of rows (see PAGESIZE),
the prompt **MORE** appears. Enter a blank line for each additional
page in batch mode; press ENTER for each additional page in online
mode.

♦ At the end of the series of views retrieved by GO, the prompt
END appears.

♦ Do not use “FOR number-of-rows” for online because DBAID will not
pause until the last screen.

♦ The GO command always looks ahead one row so it can determine
whether to display the **MORE** or **END** message. If you issue a
GET after the GO, a row may appear to have been skipped. To view
the row immediately following the last row after the GO, issue a GET
SAME.

Examples
♦ GO VIEW START AT VIEW-MARK1 USING (key-value) issues the

following sequence of RDM GET commands:
 > GET VIEW AT VIEW-MARK1

 > GET NEXT VIEW USING (key-value)

 > GET NEXT VIEW USING (key-value)

 .

 .

 .

 until RDM returns a not found FSI.

♦ GO PRIOR VIEW START LAST FROM (key-value) issues the
following sequence of RDM GET commands:

 > GET LAST VIEW USING (key-value)

 > GET PRIOR VIEW

 > GET PRIOR VIEW

 .

 .

 .

 until RDM returns a not found FSI.

GO command

RDM Administration Guide 167

INSERT command
The INSERT command places a row in the physical database based on
the relative location you specify.

[]MASS
*

PRIOR
FIRST
LAST
NEXT

 INSERT


























name-view



















PRIOR
FIRST
LAST
NEXT

Description Optional. Specifies the relative location of the row you want to insert.
The access definition may override this specification.

Default NEXT

Considerations

♦ For nonuniquely keyed values:

INSERT FIRST Places a row in the first position in the view.

INSERT NEXT Places a row after the current row. If no current
position exists, INSERT NEXT places the row in the
last position in the view.

INSERT PRIOR Places a row before the current row. If no current
position exists, INSERT PRIOR places the row in the
first position in the view.

INSERT LAST Places a row in the last position of the view.

♦ The effect of the positional keywords varies depending on the
physical data platform. See the discussion of positional keywords at
the beginning of this chapter.

Chapter 7 Managing views with the DBAID commands

168 P26-8220-64









name-view
*

Description Required. Specifies the view to use to insert the row(s).

Format View-name must be the name of an existing, opened view.

Options * INSERT with the view you used most recently.

view-name INSERT with the named view.

MASS

Description Optional. Allows you to insert multiple rows in the physical database.

Considerations

♦ Every RDM insert command issued by MASS insert uses the
positioning parameter specified (NEXT, LAST, FIRST, or PRIOR).

♦ Enter views immediately following this command after the prompt
lines MASS INSERT PROCESSING INITIATED and ENTER “END.”
TO EXIT MASS INSERT appear.

♦ Separate the column values with commas. To insert rows longer
than one line, terminate the list of values with a comma and continue
the input on the next line.

♦ Place multiple rows on a single line by leaving a blank between rows.

♦ Use a pair of single quote marks to enclose columns containing
spaces.

♦ If you have columns with no values, enter two consecutive commas
to indicate their absence. RDM treats this as a null value for packed
or zoned columns, as a large number (X'40404040' or 67372036
integer) for binary columns, and as blanks for a character column.

♦ Specify END. after you enter all rows to be inserted into the view.
The period after END is mandatory.

INSERT command

RDM Administration Guide 169

General considerations

♦ After you enter the column values on a single insert (not using
MASS), RDM displays the view. The message INSERT (Y/N)?
appears. Enter a Y response to insert the view. Any other response
will not insert the row.

♦ Processing stops if RDM detects ten errors while using the MASS
insert; otherwise, enter END. to terminate insert processing.

♦ After an INSERT, C and V are the only meaningful ASIs.

Examples The following are examples of using INSERT in an online environment.
The > indicates user input.

♦ Example of a single insert:
 > INSERT CUST
 CUSTOMER-NO
 > A7865
 CUSTOMER-NAME
 > SSTP
 CUSTOMER-ADDR
 > 3350 RUTHER
 CUSTOMER-CITY
 > CINCINNATI
 CUSTOMER-STATE
 > OH
 CUSTOMER-ZIPCODE
 > 45220
 CUSTOMER-CLASS
 > T8
 CUSTOMER-CR-LIM
 > 750.00
 CUSTOMER-BRANCH
 > 1261
 CUSTOMER-NO () A7865
 CUSTOMER-NAME () SSTP
 CUSTOMER-ADDR () 3350 RUTHER
 CUSTOMER-CITY () CINCINNATI
 CUSTOMER-STATE () OH
 CUSTOMER-ZIPCODE () 45220
 CUSTOMER-CLASS () T8
 CUSTOMER-CR-LIM () 750.00
 CUSTOMER-BRANCH () 1261
 INSERT (Y/N)?
 > Y
 FSI: * VSI: + MSG: SUCCESSFUL COMPLETION

Chapter 7 Managing views with the DBAID commands

170 P26-8220-64

♦ Example of a MASS insert (first row):
 > INSERT * MASS

 MASS INSERT PROCESSING INITIATED.

 ENTER "END." TO EXIT MASS INSERT.

 > 9997,BBBB,100783

 FSI: * VSI + MSG: SUCCESSFUL COMPLETION

 Example of same MASS insert (using comma to continue to next
line):

 > 9996,CCCC,

 > 100683

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 Example of same MASS insert (multiple rows on a single line):
 > 9995,DDDD,100583 9994,EEEE,100483 9993,FFFF,100383

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 Ending the MASS insert processing:
 > END.

 MASS INSERT PROCESSING COMPLETED.

INSERT command

RDM Administration Guide 171

KEEP command
The KEEP command disables the DBAID automatic RESET facility. This
command is the opposite of the ERASE command. This command
prohibits DBAID from issuing a RESET when it receives an X FSI from
the view. Instead, DBAID keeps the database as it is and lets the user
decide whether to RESET. This is the default setting.

KEEP

General considerations

♦ KEEP is the default.

♦ KEEP does not affect the RESET that systems commands may issue
(REMOVE, SAVE, BIND, PERMIT, and DENY) when an error occurs.

Chapter 7 Managing views with the DBAID commands

172 P26-8220-64

Line-number command
The line-number command deletes, adds, or replaces a view definition
statement in the virtual view currently being edited or defined.

line-number [view-definition-statement]

line-number

Description Required. Indicates the number of the line to delete, add, or replace.

Format 1–4 numeric characters

Considerations

♦ If a line number is less than four digits, DBAID adds zeroes to the
front of the number. For example, 10 becomes 0010. If the number
is longer than four digits, DBAID truncates it to the first four digits.

♦ If you use the line-number command without a following ddl-
statement line, this command deletes the line from the view
definition.

view-definition-statement

Description Optional. Specifies the view definition statement to add or replace.

Format Must be a valid view definition statement.

Line-number command

RDM Administration Guide 173

General considerations

♦ Before you can use this command, you must first have issued a
DEFINE, EDIT, or LIST command.

♦ Entering a command other than line-number terminates the DEFINE,
EDIT, or LIST command.

Example This example first lists the view, and when you type in the line number,
modifies
the lines.
> LIST CUST

0100 CUSTOMER-NO

0200 CUSTOMER-ADDR

0300 CUSTOMER-CITY

0400 ACCESS CUST

> 100 KEY CUSTOMER-NO *Replaces line 100

> 150 CUSTOMER-NAME *Inserts line 150

> 300 *Deletes line 300

 DBAID lists the modified view again.
> LIST CUST

0100 KEY CUSTOMER-NO

0150 CUSTOMER-NAME

0200 CUSTOMER-ADDR

0400 ACCESS CUST

Chapter 7 Managing views with the DBAID commands

174 P26-8220-64

LINESIZE command
The LINESIZE command specifies the number of characters to display in
a line.

LINESIZE [number-of-characters]

number-of-characters

Description Optional. Indicates the number of characters to display on a line.

Default 79

Format 2–3 numeric characters.

Options 10–132

Considerations

♦ In an online environment, the screen size restricts the line size
maximum to the line capacity of the screen.

♦ If you omit the number-of-characters, the command displays the
current LINESIZE setting.

LINESIZE command

RDM Administration Guide 175

LIST command
The LIST command displays a saved or virtual view and readies it for
modification.

LIST [schema-name:]








name-view
*

schema-name:

Description Optional. Identifies the schema in which the view to be listed is located.

Format Must be a valid schema defined on the Directory. The schema name
must be followed by a colon.

Consideration If you omit this parameter, LIST uses the active schema.









name-view
*

Description Required. Specifies the view to list.

Format View-name must be the name of an existing view.

Options * List the view you used most recently.

view-name List the named view.

Consideration If the view-name is not a virtual view, DBAID searches for the view in the
Directory.

Chapter 7 Managing views with the DBAID commands

176 P26-8220-64

General considerations

♦ Once you issue the LIST command, you can use the line-number
command to modify your view.

♦ If a LIST command returns no definition for a view, you may have
opened the view without doing a LIST or DEFINE of the view in the
current session. To remedy this, do a RELEASE, then UNDEFINE,
and then LIST. You must open the view again to execute it.

♦ LIST automatically issues an EDIT command for this view.

♦ Using LIST prior to OPEN reads the text for the view definition from
the Directory. A subsequent open of this view will not perform any
security checking on whether the view is related to the user.

♦ DBAID can create views when you enter text with LIST, DEFINE, or
EDIT. If you use LIST on a view in the Directory, the text becomes a
virtual view and DBAID can modify it. Virtual views let you open a
view without relating it to a user. A SAVE command does not relate
the DBAID user to the view.

Examples

♦ The following lists the BRANCH-VIEW from the active schema:
 > LIST BRANCH-VIEW

 0100 KEY BRANCH-NO

 0200 BRANCH-NAME

 0300 BRANCH-ADDR

 0400 BRANCH-CITY

 0500 BRANCH-STATE

 0600 BRANCH-ZIPCODE

 0700 REQ BRANCH-REGION = BRANCH-REGION = REGION-NO

 0800 ACCESS E$BR WHERE BRANCH-NO = BRANCH-NO ALLOW ALL

 0900 ACCESS E$RG ONCE WHERE REGION-NO = BRANCH-REGION

 1000 ACCESS E$CU WHERE CUSTOMER-BRANCH = BRANCH-NO

♦ The following lists the view VIEW from the Directory. OTHERSCH is
not the active schema.

 > LIST OTHERSCH: VIEW

LIST command

RDM Administration Guide 177

MARK command
The MARK command marks the current position of the view that the
previous GET command established.

MARK








name-view
*

 AT mark-name









name-view
*

Description Required. Specifies the view for which the position is to marked.

Format View-name must be the name of an existing, opened view.

Options * Mark the position for the view you used most recently.

view-name Mark the position for the named view.

AT mark-name

Description Required. Assigns a name to the location where you want to mark the
position of the current view.

Format 1–30 alphanumeric characters and the special characters #, $ and -. The
first character must be alphabetic or a special character. If the first
character is a special character, the second character must be
alphabetic.

Consideration The name assigned is the name you will use in a later GET AT request to
retrieve using this view.

General considerations
♦ Use the AT clause in the GET command to reposition the view at the

position set by the MARK command and named by mark-name.

♦ You can create any number of MARKs for a view, but to conserve
internal memory, it is best to reuse the mark-name when possible.

♦ The number of MARKs you can create is limited by the amount of
internal memory space allocated to your task.

♦ The size of the available slot limits the number of MARKs a program
can have outstanding at any time. When the program no longer
requires a particular MARK, issue a FORGET command for the data-
item.

Chapter 7 Managing views with the DBAID commands

178 P26-8220-64

MARKS command
The MARKS command lists all open MARKs and the views they are
marking.

MARKS

Example output
 > MARKS

 MARK NAME VIEW NAME

 B33593 CUST

 Z9551 CUST

 H2233 CUST

 CASH CUST

MARKS command

RDM Administration Guide 179

OPEN command
The OPEN command readies a stored or virtual view for use by DBAID.

OPEN [user-view-name=]








name-view
*

[column1 column2...]

user-view-name=

Description Optional. Gives an existing view a name to be used in DBAID.

Format 1–30 alphanumeric characters and the special characters #, -, and $.
The first character must be alphabetic or a special character. If the first
character is a special character, the second character must be
alphabetic.

Considerations

♦ If you do not specify user-view-name, it will be the same name as the
view-name.

♦ You can use this method (together with the column parameter) to
create many smaller views from one common view.

♦ To OPEN a view that has not been listed or defined in the same
session of DBAID, the user must be related to the view in the
Directory.









name-view
*

Description Required. Specifies the view to be readied for use.

Format View-name must be the name of an existing view.

Options * Open the view you used most recently.

view-name Open the named view.

Consideration If there is a virtual view with the same name as a saved view, DBAID
uses the virtual view.

Chapter 7 Managing views with the DBAID commands

180 P26-8220-64

column1 column2 …

Description Optional. Identifies the column or list of columns to include in the user
view. If omitted, all columns in the view are in the user view.

Format The columns must be specified in the view being opened.

Consideration The list of column names may be continued on successive lines by
ending the line you are entering with a comma. The command USER-
LIST displays the list of columns used to open the view after it has been
opened.

General considerations

♦ The OPEN command returns a message showing the number of
bytes of memory used by the view:

 nnnnn BYTES USED IN OPENING VIEW

 This information can help determine run-time internal memory
requirements.

♦ Issuing an OPEN request on a view without first issuing a LIST
request opens the view with the user relations checked but without
the view definition text available to DBAID.

♦ If changes are made to a view, you must issue the RELEASE
command and OPEN the view to implement the changes.

Example This example will return only BRANCH-NO and BRANCH-NAME when
you do a GET, even though BRANCH-VIEW has more columns defined.
 > OPEN BRANCH-NO-AND-NAME = BRANCH-VIEW BRANCH-NO, BRANCH-NAME

OPEN command

RDM Administration Guide 181

PAGESIZE command
The PAGESIZE command specifies the maximum number of lines to
display on a screen (in online DBAID) or on a page (in batch DBAID).

PAGESIZE [nnn]

number-of-lines

Description Optional. Specifies the maximum number of lines to display on a screen
(in online DBAID) or on a page (in batch DBAID).

Default 24

Format 2 or more numeric characters

Considerations

♦ The PAGESIZE number must be greater than 10.

♦ In an online environment, the PAGESIZE number cannot exceed the
screen capacity.

♦ If you omit the number from the PAGESIZE command, RDM displays
the current PAGESIZE number.

Chapter 7 Managing views with the DBAID commands

182 P26-8220-64

PERMIT command
The PERMIT command permits specified users to use a view by relating
the view to the user(s) in the Directory.

PERMIT








name-view
*

 user-name1











−







 /

...
,
b

2nameuser









name-view
*

Description Required. Specifies the view to be related to a user.

Format View-name must be the name of an existing view.

Options * Relate the view you used most recently.

view-name Relate the named view.

user-name1











−







 /

...
,
b

2nameuser

Description Required. The name(s) of the user(s) you are relating to the view in the
Directory. User names must be separated by a comma or a blank.

Format Each user-name must be the name of an existing user defined on the
Directory.

Consideration You can make this view available to all users by specifying the
PUBLIC user.

General considerations
♦ You can use the DBAID PERMIT command instead of using the

Directory Maintenance RELATE function.

♦ After successfully relating the view to each user, DBAID commits the
Directory update.

♦ If an error occurs while relating a user, DBAID backs out (resets) the
Directory update and terminates processing of the command.

♦ You can use this command only if your active environment
description specifies update access to the Directory.

PERMIT command

RDM Administration Guide 183

PRINT-STATS command
The PRINT-STATS command causes RDM to print the current statistics.

PRINT-STATS

General considerations

♦ The STATS-ON command must precede the first PRINT-STATS
command. If you do not first issue STATS-ON, PRINT-STATS has
no effect.

♦ Issue a STATS-OFF to stop gathering statistics.

♦ RDM routes statistics output to the DMLPRINT output file.

♦ Use the PRINT-STATS command to keep a statistical running total.

Example In the following example, PRINT-STATS prints statistics after each
RDML operation:
> STATS-ON

> GET NEXT BRANCH-VIEW

.

.

> PRINT-STATS

> UPDATE BRANCH-VIEW

.

.

> PRINT-STATS

Chapter 7 Managing views with the DBAID commands

184 P26-8220-64

PUBLIC-DENY command
The PUBLIC-DENY command removes the relationship between the
specified views and the **PUBLIC** user on the Directory. A view not
related to the **PUBLIC** user can be used only by a user explicitly
related to that view.

PUBLIC-DENY view-name1











−







 /

...
,
b

2nameview

view-name1











−







 /

...
,
b

2nameview

Description Required. Specifies the name(s) of the view(s) for which you want to
revoke public access.

Format Must be the name(s) of valid view(s) defined on the Directory. View
names must be separated by a comma or a blank.

General considerations

♦ The **PUBLIC** user must be defined on the Directory.

♦ You can use the DBAID PUBLIC-DENY command instead of using
Directory Maintenance to delete the relationship between the view
and the **PUBLIC** user.

♦ You can use the PUBLIC-DENY command to remove the relationship
between the **PUBLIC** user and the view regardless of whether you
created the relationship with Directory Maintenance or the
PUBLIC-PERMIT command.

♦ After successfully removing the relationship between each view and
the **PUBLIC** user, DBAID commits the Directory update.

♦ If an error occurs while removing the relationship, DBAID backs out
(resets) the Directory update and terminates processing of the
command.

♦ You can use this command only if your active environment
description specifies update access to the Directory.

♦ Global views that are related to the **PUBLIC** user continue to be
accessible to all RDM users until RDM is reinitialized.

PUBLIC-DENY command

RDM Administration Guide 185

PUBLIC-PERMIT command
The PUBLIC-PERMIT command relates view(s) to the **PUBLIC** user
on the Directory. All RDM users can use views related to the **PUBLIC**
user.

PUBLIC-PERMIT view-name1











−







 /

...
,
b

2nameview

view-name1











−







 /

...
,
b

2nameview

Description Required. Specifies the name(s) of the view(s) for which you want to
grant public access.

Format Each view-name must be the name of an existing view defined on the
Directory. View names must be separated by a comma or a blank.

General considerations

♦ The **PUBLIC** user must be defined on the Directory.

♦ You can use the DBAID PUBLIC-PERMIT command instead of using
the Directory Maintenance RELATE function to relate views to the
PUBLIC user.

♦ After successfully relating each of the views to the **PUBLIC** user,
DBAID commits the Directory update.

♦ If an error occurs while removing the relationship, DBAID backs out
(resets) the Directory update and terminates processing of the
command.

♦ You can use this command only if your active environment
description specifies update access to the Directory.

♦ Making the public views global improves performance.

Chapter 7 Managing views with the DBAID commands

186 P26-8220-64

PUBLIC-VIEWS command
The PUBLIC-VIEWS command lists the names and short text for the
views related to the **PUBLIC** user.

PUBLIC-VIEWS

Consideration The format of the display is identical to the display produced by the
VIEWS-FOR-USER DBAID command.

PUBLIC-VIEWS command

RDM Administration Guide 187

RELEASE command
The RELEASE command closes specified view(s) and releases the RDM
memory they occupy.

RELEASE 







name-view

*









name-view

*

Description Optional. Specifies the view to release.

Format View-name must be the name of an existing, opened view.

Options * Release the view you used most recently.

view-name Release the named view.

Consideration If you omit this parameter, the RELEASE command releases all of your
opened views.

General consideration

 This command does not affect virtual view text of the view(s).

Chapter 7 Managing views with the DBAID commands

188 P26-8220-64

REMOVE command
The REMOVE command removes the view definition text, its binding if
the view is bound, and the relation between the view and users,
procedures, external columns, and environment descriptions.

REMOVE [schema-name:]








name-view
*

schema-name:

Description Optional. Identifies the schema where the view to be removed is defined.

Format Must be the name of an existing schema defined on the Directory. The
schema name must be followed by a colon.

Consideration If you omit this parameter, REMOVE uses the active schema.









name-view
*

Description Required. Specifies the view to remove.

Format View-name must be the name of an existing view that you have listed or
edited.

Options * Remove the view you used most recently.

view-name Remove the named view.

REMOVE command

RDM Administration Guide 189

General considerations

♦ You must list the view before you can remove it. This protects you
from inadvertently removing views due to spelling errors.

♦ DBAID automatically issues a COMMIT when the REMOVE
command completes successfully.

♦ If an error occurs while modifying the Directory, DBAID automatically
issues a RESET and processing stops.

♦ You can use this command only if your active environment
description specifies update access to the Directory.

Examples

♦ The following removes all view definition text, binding, and relations
to the view PROD-VIEW in the Directory for the active schema. The
view is still a virtual view in DBAID.

 > REMOVE PROD-VIEW

♦ The following removes all view definition text, binding, and relations
to the view PROD-VIEW in the Directory for the schema
OTHERSCH. The active schema is unaffected.

 > REMOVE OTHERSCH: PROD-VIEW

Chapter 7 Managing views with the DBAID commands

190 P26-8220-64

RENUMBER command
The RENUMBER command renumbers a virtual view so that the line
numbering starts at ten, with each line incremented by ten.

RENUMBER








name-view
*









name-view
*

Description Required. Specifies the view to renumber.

Format View-name must be the name of an existing, opened view.

Options * Renumber the view you used most recently.

view-name Renumber the named view.

RENUMBER command

RDM Administration Guide 191

RESET command
The RESET command rolls back any database updates since the last
COMMIT point.

RESET

General considerations

♦ Use RESET only after unsuccessful RDML updates. The DBAID
default is to not automatically issue a RESET command when RDM
returns an X FSI. See the KEEP and ERASE commands.

♦ The system commands REMOVE, SAVE, BIND, PERMIT, and
DENY issue a reset if an error occurs while modifying the Directory.

♦ In batch mode with TLR, a RESET backs out any database updates
since the last COMMIT. It does not restart DBAID.

♦ In batch mode without TLR, a RESET causes an intentional abend.

Chapter 7 Managing views with the DBAID commands

192 P26-8220-64

SAVE command
The SAVE command stores views in the Directory for either the active
schema or a specified schema. This command allows you to bind views
to improve open performance.

SAVE [schema-name:]








name-view
*

[BIND]

schema-name:

Description Optional. Identifies the schema in which the view to be saved is located.

Format Must be a valid schema defined on the Directory. The schema name
must be followed by a colon.

Consideration If you omit this parameter, SAVE uses the active schema.









name-view
*

Description Required. Specifies the view to stored on the Directory.

Format View-name must be the name of an existing virtual view.

Options * Save the view you used most recently.

view-name Save the named view.

Consideration The view must have been created using one of the editing commands:
DEFINE, EDIT, or LIST.

BIND

Description Optional. Indicates that you want to bind the view.

Considerations

♦ RDM stores bindings on the Directory under the View entity in the
Directory. You can use all Directory Maintenance functions, except
LIST, on the bound view.

♦ See “View binding” on page 125 for more information on binding.

SAVE command

RDM Administration Guide 193

General considerations

♦ If the view you are saving already exists, the system asks if you want
to replace the existing view. If yes, the new view replaces the old
view on the Directory. If the view did not previously exist, you must
relate it to users before application programs can access it.

♦ You can use this command only if your active environment
description specifies update access to the Directory.

♦ When the SAVE completes successfully, DBAID automatically issues
a COMMIT. If you use the BIND option, DBAID issues a COMMIT at
the completion of the SAVE and the completion of the BIND.

♦ If an error occurs while modifying the Directory, DBAID automatically
issues a RESET and processing stops.

Examples

♦ The following stores BRANCH-VIEW’s view definition under the
active schema:

 > SAVE BRANCH-VIEW

♦ The following stores BRANCH-VIEW’s view definition under the
active schema and binds the view under the active schema:

 > SAVE BRANCH-VIEW BIND

♦ The following stores BRANCH-VIEW’s view definition under the
schema OTHERSC:

 > SAVE OTHERSC: BRANCH-VIEW

Chapter 7 Managing views with the DBAID commands

194 P26-8220-64

SHOW-NAVIGATION command
The SHOW-NAVIGATION command displays the access strategies RDM
uses for entities (files/views) accessed in open views.

SHOW-NAVIGATION 







name-view

*









name-view

*

Description Optional. Specifies the view for which you wish to display access
strategies.

Format View-name must be the name of an existing, opened view.

Options * Display access strategies for the view you used most
recently.

view-name Display access strategies for the named view.

Consideration You must first have used one of the following commands on the view:
DEFINE, EDIT, or LIST.

SHOW-NAVIGATION command

RDM Administration Guide 195

Example The following example shows the definition of a view, followed by a
SHOW-NAVIGATION command and the output of the command:

> DEFINE BRANCH-BASE-VIEW

> 0100 KEY BRANCH-NO

> 0200 BRANCH-NAME

> 0300 BRANCH-ADDR

> 0400 BRANCH-CITY

> 0500 BRANCH-STATE

> 0600 BRANCH-ZIPCODE

> 0700 BRANCH-DEL-ROUTE

> 0800 BRANCH-SLS-QUOTA

> 0900 BRANCH-STF-QUOTA

> 1000 REQ BRANCH-REGION = BRANCH-REGION = REGION-NO

> 1100 ACCESS E$BR WHERE BRANCH-NO = BRANCH-NO ALLOW ALL

> 1200 * REJECT INSERT AND UPDATE OF BRANCH- REGION IF REGION NOT VALID

> 1300 ACCESS E$RG ONCE WHERE REGION-NO = BRANCH-REGION

> 1400 * REJECT DELETION OF A BRANCH THAT HAS CUSTOMERS

> 1500 ACCESS E$CU WHERE CUSTOMER-BRANCH = BRANCH-NO

> OPEN *

FSI: * VSI: = MSG: 4536 BYTES USED IN OPENING VIEW.

> SHOW-NAVIGATION

Example output
VIEW-NAME : BRANCH-BASE-VIEW

LVL ACCESSED FILE/VIEW NAME ACCESS METHOD ACCESS PATH NAME

0 E$BR KEYED E$BRCTRL

0 E$RG KEYED E$RGCTRL

1 E$CU INDEXED E$CUSK01

Chapter 7 Managing views with the DBAID commands

196 P26-8220-64

SIGN-OFF command
The SIGN-OFF command signs off the user from RDM.

SIGN-OFF

General considerations

♦ Use the SIGN-OFF command to sign off as an RDM user without
terminating the DBAID session.

♦ When you terminate the DBAID session with the BYE command,
RDM signs you off automatically. You need not issue a SIGN-OFF
command before BYE.

♦ The SIGN-OFF command turns off statistics.

SIGN-OFF command

RDM Administration Guide 197

SIGN-ON command
The SIGN-ON command identifies the user to RDM.

SIGN-ON user-name [:psbname] [password]

user-name

Description Required. Specifies the user.

Format Must be the name of an existing user defined on the Directory.

psbname

Restriction For use with IMS databases only.

Description Optional. Specifies the name of the Program Specification Block (PSB)
to be used to access IMS databases.

Format Must be the name of a PSB in the PSB library.

password

Description Optional. Specifies the user’s password.

Format Must be the password defined for the user on the Directory.

General considerations

♦ In an online environment, you can issue SIGN-ON before entering
DBAID and you need not repeat it.

♦ In batch mode, the password field does not print on the output.

Example The following shows the user, JDOE, signing on with the password,
“DBAPSWD:”
 > SIGN-ON JDOE DBAPSWD

Chapter 7 Managing views with the DBAID commands

198 P26-8220-64

STATS command
The STATS command causes RDM to display online the current
statistics of all open views or on the view you specify. You can issue the
STATS command numerous times during a session after you have
issued a STATS-ON command.

STATS 







name-view

*









name-view

*

Description Optional. Specifies the view for which you wish to display statistics.

Format View-name must be the name of an existing, opened view.

Options * Display statistics for the view you used most recently.

view-name Display statistics for the named view.

General considerations

♦ The STATS-ON command must precede the first STATS command;
if you do not issue STATS-ON first, STATS has no effect.

♦ You can issue a STATS-OFF to stop gathering statistics.

♦ STATS displays statistics on your online terminal.

♦ You can use the STATS command to keep a running total.

Example In the following example, STATS is used to display statistics after each
RDML operation:
> STATS-ON

> GET NEXT CUST

.

.

> STATS

> UPDATE CUST

.

.

> STATS

STATS command

RDM Administration Guide 199

STATS-OFF command
The STATS-OFF command causes RDM to print the current statistics,
and disables statistics gathering after printing.

STATS-OFF

General considerations

♦ The STATS-ON command must precede the STATS-OFF command.

♦ RDM routes statistics output to the DMLPRINT output file.

♦ Issuing the STATS-OFF command without a preceding STATS-ON
command has no effect.

♦ The BYE or SIGN-OFF commands turn statistics off without printing
them.

Chapter 7 Managing views with the DBAID commands

200 P26-8220-64

STATS-ON command
The STATS-ON command causes RDM to initialize the statistics to zero
and then begin gathering statistics on a user area. The DBA can use this
command in conjunction with the STATS-OFF, PRINT-STATS, or STATS
commands to examine what user views do on both a logical and physical
level.

STATS-ON

General considerations

♦ RDM gathers statistics on a task basis, not on a systemwide basis.

♦ Use the STATS-OFF command to print statistics and then turn them
off.

♦ Use the PRINT-STATS command to print statistics and continue
gathering a running total.

♦ Use the STATS command to display statistics online and continue
gathering a running total.

♦ If you issue the BYE or SIGN-OFF command, RDM turns off your
statistics without printing them.

STATS-ON command

RDM Administration Guide 201

SURE command
The SURE command causes a COMMIT after each successful insert,
update, or delete. The SURE command causes RDM to automatically
issue a COMMIT if an RDML command returns an “*” FSI that alters the
database. This is the opposite of the CAUTIOUS command. This is the
default setting.

SURE

Chapter 7 Managing views with the DBAID commands

202 P26-8220-64

UNDEFINE command
The UNDEFINE command removes a virtual view.

UNDEFINE














name-view
ALL
*















name-view
ALL
*

Description Required. Specifies which virtual view(s) to remove.

Options * Remove the virtual view whose name you used most
recently

ALL Remove all virtual views

view-name Remove the virtual view named.

General considerations

♦ The UNDEFINE command releases the memory used by the view,
allowing it to be reclaimed for defining other views. If storage is not
relinquished and no more space is available, DBAID issues a 2816
abend code the next time you issue an OPEN or LIST command.

♦ This command has no effect on a view definition saved on the
Directory.

♦ If you want to save a view and release its memory, issue SAVE
before UNDEFINE.

♦ If the view is currently open, the UNDEFINE command does not
“release” the space used by RDM for the view.

UNDEFINE command

RDM Administration Guide 203

UPDATE command
The UPDATE command updates data values in the database.

UPDATE








name-view
*

[column1:=literal1,column2:=literal2 ...]









name-view
*

Description Required. Specifies the view you want to update.

Format View-name must be the name of an existing, opened view.

Options * Update the view you used most recently.

view-name Update the named view.

Chapter 7 Managing views with the DBAID commands

204 P26-8220-64

column1:=literal1,column2:=literal2 ...

Description Optional. Identifies column(s) in the view and their intended values.

Format columnn The name of an existing column in the view
literal Character data or numeric data

Considerations
♦ If you do not specify column name(s) in the UPDATE command,

DBAID displays the name of each column. Each time it displays the
name of an updateable column, it prompts you for a replacement
value. After processing all columns, DBAID displays the prompt
UPDATE (Y/N) and requires a response.

♦ When DBAID prompts you for a replacement value in an online
environment, and you just press ENTER, the column’s original value
is unchanged. When DBAID prompts you for a replacement value in
batch mode, the contents of your next input record become the new
value, even if it is all blanks.

In batch mode, Cincom recommends you specify column names in
the UPDATE command.

♦ If you specify column names in the UPDATE command, only the
values of the columns you specify are updated. All others remain the
same.

♦ Do not use single quotes around numeric literals.

♦ Single quotes are optional around character literals that contain
alphanumeric characters only (no spaces or special characters).

♦ In online DBAID only, you must use single quotes to change the
value of a column to blanks. A literal of spaces (keyed in) must be in
single quotes. If you just press ENTER, you do not affect the
column’s value.

♦ You cannot use the UPDATE function to modify key column values.

♦ To UPDATE a row, you must first retrieve the row with the GET
command.

♦ UPDATE can change only one row at a time. For example, to
change all PROD-CODES to T100, you must GET and UPDATE
each row individually.

UPDATE command

RDM Administration Guide 205

General consideration

 After an UPDATE, C and V are the only meaningful ASIs.

Example This example shows two columns in the CUST-PROD view being
updated.
 > UPDATE BRANCH BRANCH-NAME = OAKLEY, BRANCH-REGION = 333

Chapter 7 Managing views with the DBAID commands

206 P26-8220-64

USER-LIST command
The USER-LIST command displays the column list for the user view
named.

USER-LIST








name-view
*









name-view
*

Description Required. Specifies the view whose columns you want to list.

Format View-name must be the name of an existing, opened view.

Options * List the columns for the view you used most recently.

view-name List the columns for the named view.

Example This example shows a list of all the columns in the CUSTOMER user
view.
> USER-LIST CUST

USER VIEW NAME : CUSTOMER

VIEW NAME : CUST

USER VIEW LIST :

CUST-NO,CUSTOMER-NAME,CUSTOMER-ADDR,END.

USER-LIST command

RDM Administration Guide 207

VIEW-DEFN command
The VIEW-DEFN command displays a condensed description of a view.

VIEW-DEFN 







name-view

*









name-view

*

Description Optional. Specifies the view whose condensed description you want to
display.

Format View-name must be the name of an existing, opened view.

Options * Display description of the view you used most recently.

view-name Display description of the named view.

Consideration If you omit a view-name, RDM displays a condensed description of all
your open views.

Example
> VIEW-DEFN

VIEW-NAME (+) CUSTOMER

INS-ORDER (+) N

TOTAL-SIZE (+) 93

TOTAL-FIELDS (+) 10

TOTAL-LEVELS (+) 2

TOTAL-DELETABLE (+) 10

TOTAL-INSERTABLE (+) 10

TOTAL-REPLACEABLE (+) 10

TOTAL-REQUIRED (+) 2

TOTAL-KEYS (+) 2

TOTAL-NONUNIQUE (+) 0

MORE

Chapter 7 Managing views with the DBAID commands

208 P26-8220-64

VIEWS command
The VIEWS command displays all views currently active in DBAID.

VIEWS

General consideration

 The information displayed with this command includes:

♦ User View Name of the user view.

♦ View Name of the view of which this user view is part.

♦ Status Indicates whether the user view is open or released.

Example
> VIEWS

USER VIEW VIEW STATUS

CUS CUST OPENED

BRAN BRAN OPENED

BRANCH-VIEW BRANCH-NO RELEASED

INVOICE INVOICE OPENED

VIEWS command

RDM Administration Guide 209

VIEWS-FOR-USER command
The VIEWS-FOR-USER command lists the names and short text for
each view related to the signed-on user or to the **PUBLIC** user.

VIEWS-FOR-USER

Consideration The VIEWS-FOR-USER command does not list any view more than
once, even if that view is related both to the signed-on user and to the
PUBLIC user.

Example
> VIEWS-FOR-USERS

 VIEW NAME DATE TIME

 SHORT DESCRIPTION

MANIFEST 01/21/91 16:45:43

VIEW OF MANIFEST INFORMATION

REGN 01/21/91 16:43:55

BRAN 01/21/91 16:43:46

MANF 01/21/91 16:43:26

CUST 01/21/91 16:43:10

INVC 01/21/91 16:42:58

..

MORE*

Chapter 7 Managing views with the DBAID commands

210 P26-8220-64

8
Using the RDM reports

The RDM report utility generates reports about RDM views in the active
schema. (To track a user/view relationship across multiple schemas, you
must use Directory reports. For information about Directory reports, refer
to the SUPRA Server PDM and Directory Administration Guide (OS/390
& VSE), P26-2250.)

You specify three parameters for a report: Report type, View, and User.

You specify the RDM report(s) you want with the following report type
codes:

Code Meaning
A All Reports
C COBOL Programmer’s Report
D DBAs Report
E Impact of Change (Extract)
L PL/1 Programmer’s Report
P Both COBOL and PL/1 Programmer’s Reports
U End user Report
V Views Used by Programs Report

RDM Administration Guide 211

If you specify USER=ALL and a single view, the printed report shows all
users for a view. If you specify VIEW=ALL and a single user, the report
shows all the views a particular user is able to access. If you specify a
single view and a single user, the report utility verifies that they are
related.

Your SUPRA Server libraries contain procedures and job control
language (JCL) samples for running RDM reports. Samples are subject
to change. See the SUPRA Server JCL library or source statement
library member TXJ$INDX for a list of JCL samples.

OS/390 See the SUPRA Server procedure library member TIS$RDM for a list of
RDM procedures. See the SUPRA Server macro library or source
statement library member TX$$INDX for an index to the different kinds of
samples. For more information on JCL samples, refer to the SUPRA
Server PDM and Directory Administration Guide (OS/390 & VSE),
P26-2250.

Chapter 8 Using the RDM reports

212 P26-8220-64

DBA report
The DBA Report helps you keep track of the views you have defined in
the Directory and also the users of those views. The DBA Report
consists of the following:

♦ TITLE. Report title includes the date and time the report was
generated and the schema name which the report includes.

♦ VIEW. The name of the view being described.

♦ LAST UPDATE. The time and date of the last update to this view.

♦ THIS VIEW IS NOT BOUND. A message indicating the view is not
bound.

♦ THIS VIEW IS BOUND. A message indicating the view is bound.

♦ ACCESS SET. The view definition, including column and access
definitions, as defined on the Directory.

♦ COLUMN. Lists each column in the view.

♦ FROM. If reporting on a base view, EXT FIELD = lists the external
field this column maps to. If reporting on a derived view, COLUMN =
lists the column that this column maps to in another view.

♦ IN. If reporting on a base view, PHY FIELD = displays the physical
field name, and FILE = lists the file name. RC = lists the record
code, if applicable. If reporting on a derived view, VIEW = lists the
view name the view accesses.

♦ USERS. Lists the users to whom this view is related.

DBA report

RDM Administration Guide 213

The following code listing shows a sample DBA Report.
SUPRA RDM DIRECTORY REPORTS LEVEL nnnn COPYRIGHT 19nn CSI - ALL RIGHTS RESERVED 14:46:39 04-01-1991 PAGE 2

 *** RELATIONAL DATA MANAGER DBA REPORT FOR SCHEMA BURRYSCH ***

SUPRA RDM DIRECTORY REPORTS LEVEL nnnn COPYRIGHT 19nn CSI - ALL RIGHTS RESERVED 14:46:39 04-01-1991 PAGE 160

 *** RELATIONAL DATA MANAGER DBA REPORT FOR SCHEMA BURRYSCH ***

 LOGICAL VIEW: SUPPLIERS-BY-PRODUCT

 LAST UPDATE : 08:15:50 03-25-1991

 THIS LOGICAL VIEW IS NOT BOUND.

 ACCESS SET:

 100 KEY PRODUCT-CODE

 200 PRODUCT-DESC

 300 PRODUCT-PRICE

 400 PRODUCT-WH-QNTY

 500 VS-NO-SUPPLIER

 600 VS-NO-PART-NO

 700 VS-NO-PART-COST

 800 SUPPLIER-NAME

 900 SUPPLIER-ADDR

 1000 SUPPLIER-CITY

 1100 SUPPLIER-STATE

 1200 SUPPLIER-ZIPCODE

 1300 ACCESS E$PD WHERE PRODUCT-CODE = PRODUCT-CODE

 1400 ACCESS E$VS WHERE VS-NO-PRODUCT = PRODUCT-CODE

 1500 ACCESS E$SU WHERE SUPPLIER-NO = VS-NO-SUPPLIER

COLUMN FROM IN

PRODUCT-CODE EXT FIELD = PRODUCT-CODE PHY FIELD = E$PDCTRL FILE = E$PD RC =

PRODUCT-DESC EXT FIELD = PRODUCT-DESC PHY FIELD = E$PDDESC FILE = E$PD RC =

PRODUCT-PRICE EXT FIELD = PRODUCT-PRICE PHY FIELD = E$PDPRCE FILE = E$PD RC =

PRODUCT-WH-QNTY EXT FIELD = PRODUCT-WH-QNTY PHY FIELD = E$PDWQTY FILE = E$PD RC =

VS-NO-SUPPLIER EXT FIELD = VS-NO-SUPPLIER PHY FIELD = EVSESU FILE = E$VS RC =

VS-NO-PART-NO EXT FIELD = VS-NO-PART-NO PHY FIELD = E$VSNUMB FILE = E$VS RC =

VS-NO-PART-COST EXT FIELD = VS-NO-PART-COST PHY FIELD = E$VSVCST FILE = E$VS RC =

SUPPLIER-NAME EXT FIELD = SUPPLIER-NAME PHY FIELD = E$SUNAME FILE = E$SU RC =

SUPPLIER-ADDR EXT FIELD = SUPPLIER-ADDR PHY FIELD = E$SUADDR FILE = E$SU RC =

SUPPLIER-CITY EXT FIELD = SUPPLIER-CITY PHY FIELD = E$SUCITY FILE = E$SU RC =

SUPPLIER-STATE EXT FIELD = SUPPLIER-STATE PHY FIELD = E$SUSTAT FILE = E$SU RC =

SUPPLIER-ZIPCODE EXT FIELD = SUPPLIER-ZIPCODE PHY FIELD = E$SUZIPC FILE = E$SU RC =

USERS

CINCOM

EDUCATION

STUDENT

TJD

Chapter 8 Using the RDM reports

214 P26-8220-64

Programmer’s report
The Programmer’s Report provides a programmer with all necessary
information about a view. Both COBOL and PL/1 programmers can
produce this report. The Programmer’s Report provides this information
for each column in the view:

♦ View name

♦ Field (Column) type

- KEY

- NONUNIQUE KEY

- CONST

- REQUIRED

♦ Field (Column) name

♦ Field type declaration

- The picture clause (generated by the RDM COBOL
preprocessor)

- The DECLARE clause (generated by the RDM PL/1
preprocessor)

♦ Description—Any text information

The programmer uses the column type information when constructing
keyed GETs or in determining which columns to subset when creating a
user view.

The DBA can include any type of text information in defining the view, for
example, to give special instructions on how to use the view The
following code listing shows a COBOL Programmer’s Report. A PL/1
Programmer’s Report follows this example.

Programmer’s report

RDM Administration Guide 215

SUPRA RDM DIRECTORY REPORTS LEVEL nnnn COPYRIGHT 19nn CSI-ALL RIGHTS RESERVED 14:46:39 04-01-1991 PAGE 329

 *** RELATIONAL DATA MANAGER COBOL PROGRAMMER'S REPORT FOR SCHEMA BURRYSCH ***

 LOGICAL VIEW: SUPPLIERS-BY-PRODUCT

FIELD TYPE
FIELD NAME

PICTURE

DESCRIPTION

KEY PRODUCT-CODE X(009) BURRYS PRODUCT IDENTIFIER

 PRODUCT-DESC X(030) BURRYS PRODUCT IDENTIFIER

 PRODUCT-PRICE 9(07)V9(02) BURRYS PRODUCT IDENTIFIER

 PRODUCT-WH-QNTY 9(05) BURRYS PRODUCT IDENTIFIER

 VS-NO-SUPPLIER X(006) BURRYS PRODUCT IDENTIFIER

 VS-NO-PART-NO X(020) BURRYS PRODUCT IDENTIFIER

 VS-NO-PART-COST 9(07)V9(02) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-NAME X(020) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-ADDR X(020) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-CITY X(013) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-STATE X(002) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-ZIPCODE 9(05) BURRYS PRODUCT IDENTIFIER

SUPRA RDM DIRECTORY REPORTS LEVEL nnnn COPYRIGHT 19nn CSI-ALL RIGHTS RESERVED 14:46:39 04-01-1991 PAGE 330

 *** RELATIONAL DATA MANAGER COBOL PROGRAMMER'S REPORT FOR SCHEMA BURRYSCH ***

 LOGICAL VIEW: SUPPLIERS-BY-PRODUCT-VV

FIELD TYPE
FIELD NAME

PICTURE

DESCRIPTION

KEY PRODUCT-CODE X(009) BURRYS PRODUCT IDENTIFIER

 PRODUCT-DESC X(030) BURRYS PRODUCT IDENTIFIER

 PRODUCT-PRICE 9(07)V9(02) BURRYS PRODUCT IDENTIFIER

 PRODUCT-WH-QNTY 9(05) BURRYS PRODUCT IDENTIFIER

KEY VS-NO-SUPPLIER X(006) BURRYS PRODUCT IDENTIFIER

 VS-NO-PART-NO X(020) BURRYS PRODUCT IDENTIFIER

 VS-NO-PART-COST 9(07)V9(02) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-NAME X(020) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-ADDR X(020) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-CITY X(013) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-STATE X(002) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-ZIPCODE 9(05) BURRYS PRODUCT IDENTIFIER

Chapter 8 Using the RDM reports

216 P26-8220-64

SUPRA RDM DIRECTORY REPORTS LEVEL nnnn COPYRIGHT 19nn CSI-ALL RIGHTS RESERVED 14:46:39 04-01-1991 PAGE 497

 *** RELATIONAL DATA MANAGER PL/1 PROGRAMMER'S REPORT FOR SCHEMA BURRYSCH ***

 LOGICAL VIEW: SUPPLIERS-BY-PRODUCT

FIELD TYPE
FIELD NAME

DECLARE

DESCRIPTION

KEY PRODUCT-CODE CHAR(9) BURRYS PRODUCT IDENTIFIER

 PRODUCT-DESC CHAR(30) BURRYS PRODUCT IDENTIFIER

 PRODUCT-PRICE PIC '(7)9V99' BURRYS PRODUCT IDENTIFIER

 PRODUCT-WH-QNTY PIC '(4)99' BURRYS PRODUCT IDENTIFIER

 VS-NO-SUPPLIER CHAR(6) BURRYS PRODUCT IDENTIFIER

 VS-NO-PART-NO CHAR(20) BURRYS PRODUCT IDENTIFIER

 VS-NO-PART-COST PIC '(7)9V99' BURRYS PRODUCT IDENTIFIER

 SUPPLIER-NAME CHAR(20) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-ADDR CHAR(20) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-CITY CHAR(13) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-STATE CHAR(2) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-ZIPCODE PIC '(4)99' BURRYS PRODUCT IDENTIFIER

SUPRA RDM DIRECTORY REPORTS LEVEL nnnn COPYRIGHT 19nn CSI-ALL RIGHTS RESERVED 14:46:39 04-01-1991 PAGE 498

*** RELATIONAL DATA MANAGER PL/1 PROGRAMMER'S REPORT FOR SCHEMA BURRYSCH ***

LOGICAL VIEW: SUPPLIERS-BY-PRODUCT-VV

FIELD TYPE
FIELD NAME

DECLARE

DESCRIPTION

KEY PRODUCT-CODE CHAR(9) BURRYS PRODUCT IDENTIFIER

 PRODUCT-DESC CHAR(30) BURRYS PRODUCT IDENTIFIER

 PRODUCT-PRICE PIC '(7)9V99' BURRYS PRODUCT IDENTIFIER

 PRODUCT-WH-QNTY PIC '(4)99' BURRYS PRODUCT IDENTIFIER

KEY VS-NO-SUPPLIER CHAR(6) BURRYS PRODUCT IDENTIFIER

 VS-NO-PART-NO CHAR(20) BURRYS PRODUCT IDENTIFIER

 VS-NO-PART-COST PIC '(7)9V99' BURRYS PRODUCT IDENTIFIER

 SUPPLIER-NAME CHAR(20) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-ADDR CHAR(20) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-CITY CHAR(13) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-STATE CHAR(2) BURRYS PRODUCT IDENTIFIER

 SUPPLIER-ZIPCODE PIC '(4)99' BURRYS PRODUCT IDENTIFIER

Programmer’s report

RDM Administration Guide 217

End user report
The End User Report is an abbreviated report intended for the non-
technical end user, for example, the SPECTRA user. It provides this
information:

♦ View name

♦ Users related to view

♦ Sequence number of each column

♦ Column name

♦ Column description (from the short text on the Directory)

Chapter 8 Using the RDM reports

218 P26-8220-64

The following code sample shows an End User Report:
SUPRA RDM DIRECTORY REPORTS LEVEL nnnn COPYRIGHT 19nn CSI-ALL RIGHTS RESERVED 14:46:39 04-01-1991 PAGE 653

 *** RELATIONAL DATA MANAGER END USER REPORT FOR SCHEMA BURRYSCH ***

 USER: TJD

 LOGICAL VIEW: SUPPLIERS-BY-PRODUCT

SEQ# COLUMN NAME DESCRIPTION

1 PRODUCT-CODE BURRYS PRODUCT IDENTIFIER

2 PRODUCT-DESC BURRY'S PRODUCT DESCRIPTION

3 PRODUCT-PRICE CURRENT SELLING PRICE OF BURRY'S PRODUCT

4 PRODUCT-WH-QNTY QUANTITY OF PRODUCTS IN WAREHOUSE

5 VS-NO-SUPPLIER SUPPLIER(VENDOR) IDENTIFIER

6 VS-NO-PART-NO VENDOR'S PRODUCT IDENTIFIER

7 VS-NO-PART-COST VENDOR'S PRODUCT COST

8 SUPPLIER-NAME NAME OF SUPPLIER

9 SUPPLIER-ADDR STREET ADDRESS OF SUPPLIER

0 SUPPLIER-CITY CITY LOCATION OF SUPPLIER

1 SUPPLIER-STATE STATE WHERE SUPPLIER RESIDES

2 SUPPLIER-ZIPCODE POSTAL LOCALE OF SUPPLIER

SUPRA RDM DIRECTORY REPORTS LEVEL nnnn COPYRIGHT 19nn CSI-ALL RIGHTS RESERVED 14:46:39 04-01-1991 PAGE 654

 *** RELATIONAL DATA MANAGER END USER REPORT FOR SCHEMA BURRYSCH ***

 USER: TJD

 LOGICAL VIEW: SUPPLIERS-BY-PRODUCT-VV

SEQ# COLUMN NAME DESCRIPTION

1 PRODUCT-CODE DERIVED FROM VIEW PROD

2 PRODUCT-DESC DERIVED FROM VIEW PROD

3 PRODUCT-PRICE DERIVED FROM VIEW PROD

4 PRODUCT-WH-QNTY DERIVED FROM VIEW PROD

5 VS-NO-SUPPLIER DERIVED FROM VIEW VSNO

6 VS-NO-PART-NO DERIVED FROM VIEW VSNO

7 VS-NO-PART-COST DERIVED FROM VIEW VSNO

8 SUPPLIER-NAME DERIVED FROM VIEW SUPP

9 SUPPLIER-ADDR DERIVED FROM VIEW SUPP

10 SUPPLIER-CITY DERIVED FROM VIEW SUPP

11 SUPPLIER-STATE DERIVED FROM VIEW SUPP

12 SUPPLIER-ZIPCODE DERIVED FROM VIEW SUPP

End user report

RDM Administration Guide 219

Impact of change report
The Impact of Change Report reports any changes you make to files or
base views that can impact derived views, application programmers, or
SPECTRA users. The Impact of Change Report is divided into three
separate reports:

♦ Files Impacting Views

♦ Views Impacting Views

♦ Views Impacting Programs

Files impacting views report
The Files Impacting Views report describes physical changes to files that
may impact base or derived views. This report contains the following
information:

♦ Physical file name

♦ Record code

♦ Physical Field name

♦ External Field name

♦ Column name

♦ View Name

♦ D—File directly impacts this view

♦ I—File indirectly impacts this view (the column is derived from
 another view)

Chapter 8 Using the RDM reports

220 P26-8220-64

The following code sample shows a Files Impacting Views Report:
TISXA RDM DIRECTORY REPORTS COPYRIGHT 19nn CSI - ALL RIGHTS RESERVED 16:13:35 06/02/87

 *** LOGICAL VIEW IMPACT OF CHANGE REPORT FOR FILES IMPACTING VIEWS

 FILE : E$PD

RECORD CODE PHYSICAL
FIELD

EXTERNAL
 FIELD

COLUMN NAME

VIEW NAME

TYPE OF
IMPACT

 E$PDCTRL PRODUCT-CODE INVLINE-PRODUCT ADD-INVOICE-VV I
 INVLINE-PRODUCT INVL D
 INVLINE-PRODUCT INVOICE-VV I
 INVLINE-PRODUCT VV-INV-VV I
 MANLINE-PRODUCT MANIFEST-VV I
 MANLINE-PRODUCT MANL D
 PRODUCT-CODE BILL D
 PRODUCT-CODE BRANCH-STOCK-BY-PRODUCT D
 PRODUCT-CODE BRANCH-STOCK-BY-PRODUCT-VV I
 PRODUCT-CODE MAIN-WAREHOUSE-INVEN-VV I
 PRODUCT-CODE MAIN-WAREHOUSE-INVENTORY D
 PRODUCT-CODE PROD D
 PRODUCT-CODE PROD-SUPP-VV I
 PRODUCT-CODE PRODUCT-PURCHASE-INFO-VV I
 PRODUCT-CODE SUPPLIERS-BY-PRODUCT D
 PRODUCT-CODE SUPPLIERS-BY-PRODUCT-VV I
 PRODUCT-CODE VERIFY-PRODUCT D
 PRODUCT-CODE VERIFY-PRODUCT-VV I
 PRODUCT-CODE VV-PROD I
 STOCK-PRODUCT BRANCH-STOCK-VV I
 STOCK-PRODUCT REGIONAL-SHIPPING-VV I
 STOCK-PRODUCT STCK D
 STOCK-PRODUCT UPDATE-STOCK-VV I
 STRUCTURE-ASSM MAIN-WAREHOUSE-INVEN-VV I
 STRUCTURE-ASSM STRU D
 VS-NO-PRODUCT VENDOR-STOCK-NUMS-VV I
 VS-NO-PRODUCT VSNO D
 E$PDDESC PRODUCT-DESC PRODUCT-DESC ADD-INVOICE-VV D
 PRODUCT-DESC BRANCH-STOCK D
 PRODUCT-DESC BRANCH-STOCK-BY-PRODUCT D
 PRODUCT-DESC BRANCH-STOCK-BY-PRODUCT-VV I
 PRODUCT-DESC BRANCH-STOCK-VV I
 PRODUCT-DESC INVOICE D
 PRODUCT-DESC INVOICE-VV I
 PRODUCT-DESC MAIN-WAREHOUSE-INVEN-VV I
 PRODUCT-DESC MAIN-WAREHOUSE-INVENTORY D
 PRODUCT-DESC MANIFEST D
 PRODUCT-DESC MANIFEST-VV I
 PRODUCT-DESC PO-BY-DATE D
 PRODUCT-DESC PROD D

Impact of change report

RDM Administration Guide 221

Views impacting views report
The Views Impacting Views Report describes changes to base views that
impact derived views. This report contains the following information:

♦ Impacting view name (base view)

♦ Impacted view name

♦ D—Impact is direct

♦ I—Impact is indirect

If a view is not derived from any other views, the following information
appears on the report:

♦ View name

♦ Message: NO IMPACTING VIEWS

Views derived from views that do not themselves impact views are not
listed.

The following listing shows a Views Impacting Views Report. In the
example, impact is direct (D) for all views beginning with ADD-INVOICE-
VV through VERIFY-PRODUCT-VV. The type of impact prints on the
report only when it changes. If the TYPE OF IMPACT field is blank for a
particular view, assume it is the same as the most recent impact printed.

Chapter 8 Using the RDM reports

222 P26-8220-64

TIS/XA RDM DIRECTORY REPORTS COPYRIGHT 19nn CSI - ALL RIGHTS RESERVED 16:13:35 06/02/87

 *** LOGICAL VIEW IMPACT OF CHANGE REPORT FOR VIEWS IMPACTING VIEWS

 VIEW : PROD

IMPACTED VIEW NAME TYPE OF IMPACT

NO IMPACTING VIEWS
ADD-INVOICE-VV D
BRANCH-STOCK-BY-PRODUCT-VV
BRANCH-STOCK-VV
INVOICE-VV
MAIN-WAREHOUSE-INVEN-VV
MANIFEST-VV
PROD-SUPP-VV
PRODUCT-PURCHASE-INFO-VV
REGIONAL-SHIPPING-VV
SUPPLIERS-BY-PRODUCT-VV
UPDATE-STOCK-VV
VENDOR-STOCK-NUMS-VV
VERIFY-PRODUCT-VV
VV-INV-VV I
VV-PROD D

Views impacting programs report
The Views Impacting Programs report is indexed by view and lists all
programs that use a view. When you change a view definition, use this
report to find any affected programs. This report contains the following
information:

♦ Impacting view name

♦ Program name

♦ D—Impact is direct

♦ I—Impact is indirect

Impact of change report

RDM Administration Guide 223

Views used by programs report
When an RDM processor processes applications, they are enrolled in the
Directory and automatically related to the views they use. The Views
Used by Programs Report provides a list of programs each view uses
and the following information:

♦ View name

♦ All programs that use that name

♦ Date the view was last updated

♦ Time the view was last updated

The following listing shows a Views Used by Programs Report:

SUPRA RDM DIRECTORY REPORTS LEVEL nnnn COPYRIGHT 19nn CSI - ALL RIGHTS RESERVED 14:46:39

04-01-1991

PAGE 695

 *** RELATIONAL DATA MANAGER VIEWS USED BY PROGRAMS REPORT FOR SCHEMA BURRYSCH ***

LOGICAL VIEWS

PROGRAMS

DATE UPDATED

TIME UPDATED

SUPPLIERS-BY-PRODUCT

**** NO PROCEDURES RELATED TO THIS LOGICAL VIEW ****

SUPPLIERS-BY-PRODUCT-VV **** NO PROCEDURES RELATED TO THIS LOGICAL VIEW ****

Chapter 8 Using the RDM reports

224 P26-8220-64

9
Configuring the RDM for your
environment

Overview of configuring the RDM for your environment
This chapter tells you how to find the information to configure and use
RDM in your operating environment (under the operating system and
teleprocessing monitor you use). This chapter also lists the RDM
modules by operating system and summarizes the new and different
RDM characteristics.

Your SUPRA Server libraries contain procedures and job control
language (JCL) samples for running RDM-related jobs in your operating
environment. Samples are subject to change. See the SUPRA Server
JCL library or source statement library member TXJ$INDX for a list of
JCL samples.

OS/390 See the SUPRA Server procedure library member TIS$RDM for a list of
RDM procedures. See the SUPRA Server macro library or member
TX$$INDX for an index to the different kinds of samples.

VSE See the SUPRA Server RDM sublibrary member TXJ$INDX for a list of
JCL. The sample job to assemble and link the options module can be
found in that list.

See your SUPRA Server Installation Guide for the latest information
relevant to your installation, and for specific instructions on linking,
initializing, and bringing up RDM the first time.
Refer to the SUPRA Server OS/390 Installation Guide, P26-0149, or the
SUPRA Server VSE Installation Guide, P26-0132, for information on the
resources (memory and disk space) requirements and usage for RDM
and other SUPRA Server components under your operating environment.

RDM Administration Guide 225

See “Setting the online RDM options with macros” on page 261 for
information on how to set RDM memory options and other options with
the RDM macro C$VOOPTM.

You must process your COBOL or PL/1 RDM application program source
code with the RDML precompiler before you compile the code with the
standard COBOL or PL/1 compiler. Refer to the RDM programming
guides for information on creating, precompiling, compiling, linking, and
running RDM application programs:

♦ SUPRA Server PDM RDM COBOL Programming Guide (OS/390 &
VSE), P26-8330

♦ SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331

The implementation of online RDM under OS/390/XA, OS/390/ESA or
VSE/ESA differs from other versions of RDM in that it takes advantage of
extended memory (memory above the 16 MB line):

♦ It allocates task work memory in separate heaps and stacks rather
than in slots. It allows the heaps to be allocated in extended
memory. (One heap and one stack are the equivalent of one slot.
One active task employs one heap and one stack. The stack is in
storage only for the life of an RDML command.)

♦ It allows the allocation of global views in extended memory.

♦ It loads the largest part of RDM, the resident module (CSVNVRES),
in extended memory. The table on the following page lists and briefly
describes each of the major modules in RDM.

Chapter 9 Configuring the RDM for your environment

226 P26-8220-64

OS/390 online
load module

OS/390 batch
load module

VSE online
phase

VSE batch
phase

Description

CSVCOBPP CSVCOBPP CSVCOBPP CSVCOBPP COBOL preprocessor
CSVPL1PP CSVPL1PP CSVPL1PP CSVPL1PP PL/1 preprocessor
n/a CSVIBDBA n/a CSVJBDBA Batch DBAID Support
n/a CSVIBINT n/a CSVJBINT Batch RDM Support
CSVLVDBA CSVLVDBA CSVLVDBA CSVLVDBA DBAID mainline
CSVNVRES CSVLVRES CSVNVRES CSVLVRES Reentrant component of

RDM mainline
CSVNVRUN CSVLVRUN CSVNVRUN CSVLVRUN Nonreentrant

component of RDM
mainline

CSVODBA n/a CSVODBA n/a CICS DBAID Support

CSVOPLVS n/a CSVOPLVS n/a CICS Program Interface
CSVNDATB n/a CSVNDATB n/a CICS PDM Support
CSVNVSAM n/a CSVNVSAM n/a VSAM Support—CICS
n/a CSVIVSAM n/a CSVJVSAM VSAM Support—Batch
n/a CSVUREPT n/a CSVUREPT RDM Directory Report

Mainline
n/a CSVILUV

 CSVOSVS
 (Alias)
 CSVIOSVS
 (Alias)

n/a CSVJLUV Batch Program Interface

CSVNICIC n/a CSVNICIC n/a CICS Program Interface
CSVNPLVS n/a CSVNPLVS n/a CICS RDM Support
CSVNRDIN n/a CSVNRDIN n/a RDM START/STOP

Processing
CSVXRSSO n/a CSVXRSSO n/a RESET/SINOF

Processing

Overview of configuring the RDM for your environment

RDM Administration Guide 227

Configuring the RDM XA storage
Task context is allocated in a separate heap and stack. You specify
heaps and stacks in the options module, CSVOOPTM (OS/390) or
CSVDOPTM.A (VSE). See “Customizing the RDM processing with user
exits” on page 237 for information about coding these options.

Heaps store view context and can be allocated above the 16 MB line.
Heap storage is required for every RDM CICS transaction, and is
retained until the transaction signs off of RDM. All heap storage is
allocated during RDM initialization. The size and number of heaps is
determined by the options module CSVOOPTM (OS/390) or
CSVDOPTM.A (VSE). If more tasks sign on to RDM than there are
available heaps, heap storage is rolled to auxiliary temporary storage for
pseudoconversational tasks.

Stacks store task context for the PASCAL routines of RDM. Stacks are
always allocated below the 16 MB line. Stack storage is required for
every RDM CICS task. The storage is allocated when the task issues its
first RDML and is released when the task either issues an RDML sign-off
or detaches. Stacks are allocated from the CICS dynamic storage area
(DSA).

The global view pool size is also defined in the options module
CSVOOPTM or CSVDOPTM.A. Since the pool can be allocated above
the 16 MB line, you should specify a size large enough to accommodate
the number of views you want to remain in memory. After global views
are opened, all unused memory in the pool is released.

Heaps and the global view pool are acquired from storage managed by
the operating system (GETMAIN with OS/390, GETVIS with VSE). The
available space will be the size of your CICS region minus the DSASZE
operand you specify in the System Initialization Table (SIT). Refer to the
SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452, for additional information about calculating
storage.

The options module also defines whether to allocate RDM CICS storage
above or below the 16 MB line. If you run the Physical Data Manager
(PDM) in the attached mode, you must allocate RDM CICS storage below
the line. Refer to the SUPRA Server PDM Tuning Guide (OS/390 &
VSE), P26-0225, for additional information about defining task and global
view storage.

Chapter 9 Configuring the RDM for your environment

228 P26-8220-64

Interaction of options parameters
The various SUPRA Server options in a CICS environment include the
interaction of parameters among the following:

♦ The SUPRA Server active environment description

♦ The SUPRA Server CICS Connector Options table

♦ The SUPRA Server CICS Connector OPER CONNECT request

♦ The RDM C$VOOPTM macro and the options module

♦ The IBM CICS system SIT values

Interaction of options parameters

RDM Administration Guide 229

Environment description parameters
A central PDM operates under control of an active environment
description. You identify this active environment description in the
REALM parameter of the CSIPARM file (ENVDESC=). The active
environment description supplies three values:

♦ Maximum Connected Interfaces value. This value sets the limit for
the maximum number of regions/partitions that can communicate
with a central PDM. PDM connects one interface for each
region/partition when it identifies itself via a sign-on or connect
request. An interface remains connected until the region/partition
severs the connection. A CICS system uses one interface.

♦ Maximum Signed On Tasks value. This value sets the total
number of tasks that the central PDM can service throughout the
system.

♦ Maximum Connected Threads value. This value sets the limit on
the number of concurrent PDML requests that PDM will service. The
PDM allocates a thread to a PDM task while a PDML is being
serviced. The thread is freed when the PDML completes.

For each CICS interface, a THREADS parameter can be specified on the
OPER CONNECT request. This number represents a subset of the
Maximum Connected Threads in the active environment description.

In a CICS system, the default value for THREADS is the CSTXOPRM
THREADS parameter. (In the following discussion when the
CSTXOPRM THREADS value is mentioned, it is understood that a given
OPER CONNECT can set a different value.) This parameter value sets
the maximum number of PDMLs the PDM can service concurrently for
that CICS system. When CICS issues its OPER CONNECT, PDM
attempts to reserve this number of threads for that interface. If the limit
of PDM threads from the active environment description has been
exceeded, the OPER CONNECT fails with a PDM IPAR status. The
threads in a CICS interface remain reserved for that CICS until CICS
issues an OPER DISCONNECT which releases the threads as well as
the tasks and interface.

Chapter 9 Configuring the RDM for your environment

230 P26-8220-64

The connect/sinon process
In a CICS environment, the CICS system must connect its interface to
the PDM before any CICS transaction is allowed to issue any PDML calls.
Before the interface is connected, every PDML issued by a CICS
transaction will receive a PDM NOTO status instead of the requested
service. The connection of the interface occurs in the CICS Connector
component of SUPRA Server; the connect request is invoked either
automatically, using standard CICS initialization features, or manually,
after CICS has initialized. Both methods involve issuing the OPER
transaction with the CONNECT subfunction. OPER CONNECT connects
one interface between a CICS and a central PDM. If the number of
connected interfaces in the system reaches the Maximum Connected
Interfaces value, the OPER CONNECT request receives a PDM IPAR
status instead of connecting the interface.

Interaction of options parameters

RDM Administration Guide 231

OPER CONNECT parameters
An OPER CONNECT request specifies a TASKS parameter. The default
value for this parameter is the CSTXOPRM TASKS parameter.
(CSTXOPRM is the macro for generating the SUPRA Server CICS
Connector CSTXOTBL module. However, a given OPER CONNECT can
set a different value than is defined in CSTXOPRM.) When PDM services
an OPER CONNECT, it attempts to reserve a number of task entries as
specified in the TASKS parameter for the CICS interface. The TASKS
parameter value sets the maximum number of tasks allowed to sign on to
the PDM in that CICS region. This is the maximum number of
transactions in a CICS that can issue a PDML SINON without issuing a
matching PDML SINOF. If the number of PDM tasks signed on or
reserved exceeds the maximum signed on tasks value in the active
environment description, the OPER CONNECT fails with a PDM IPAR
status. Once an OPER CONNECT succeeds, transactions within a CICS
can sign on to the PDM, up to the limit imposed by CSTXOPRM TASKS.
Once this limit is reached, the next transaction within that CICS
attempting a PDML SINON receives a PDM CFUL status. A CICS
interface remains connected and all its PDM tasks remain reserved until
the interface is disconnected. The OPER DISCONNECT releases all the
tasks reserved for that interface and disconnects the interface.

Chapter 9 Configuring the RDM for your environment

232 P26-8220-64

RDML processing
If a CICS transaction issues RDMLs, the first RDML must be an RDML
sign-on (either implicit or explicit), which in turn issues a PDML SINON.
This means that every RDM transaction is one of the PDM tasks. The
limit on RDM CICS tasks is the C$VOOPTM RDMUSR# parameter. The
maximum value of RDMUSR# is CSTXOPRM minus any task
requirements for non-RDM tasks. However, if RDMUSR# is greater than
TASKS, the number of signed-on RDM transactions can never reach its
maximum of RDMUSR#. Thus, if RDMUSR# is less than TASKS and the
number of signed-on RDM transactions reaches RDMUSR#, the next
transaction to issue an RDML sign-on will receive a failure status due to
insufficient resources to service the request. And if RDMUSR# is greater
than TASKS and the number of signed-on RDM transactions reaches
TASKS, the next transaction to issue an RDML sign-on will receive a
failure status due to a PDM CFUL status.

Each RDM task triggers the allocation of stack storage from CICS DSA
below the 16 MB line. A stack exists until the task signs off RDM or
detaches, at which time the stack storage is released to CICS DSA.
Since the limit on concurrent RDM transactions is controlled by the CICS
parameter AMXT (CICS 3.3 and below) or MXT (CICS 4 and above), this
number is also the limit on the number of stacks that can be allocated at
the same time. Stack size is controlled by the C$VOOPTM STACKSZ
parameter. A value of STACKSZ=32K should be sufficient for most
environments.

During RDM initialization, several RDM storage areas (heaps) are
allocated from virtual storage below or above the 16 MB line. The
C$VOOPTM HEAP# parameter determines the number of heaps, the
C$VOOPTM HEAPSZ parameter determines the size of each heap, and
the C$VOOPTM GETMAIN parameter determines the location above or
below the line. The heaps remain allocated throughout the CICS
execution.

The value GETMAIN=A is available only if you purchase an extra-cost
option. Please contact your Cincom representative for more information.

Interaction of options parameters

RDM Administration Guide 233

When a transaction issues an RDML sign-on, RDM assigns a heap to
that transaction. The heap remains assigned to that transaction until it
issues an RDML sign-off or terminates abnormally, at which time RDM
releases the heap, making it available to other RDM transactions. When
a signed-on RDM transaction opens a logical view, RDM builds the
context areas for the open view in that transaction’s heap. When CICS
passes control to an RDM transaction, it must have both a stack and a
heap available to it. If the RDM transaction is conversational, the end of
the transaction triggers an RDML sign-off (if the application code has not
already issued one), and the stack and heap are released. But if the
RDM transaction is pseudoconversational, a task within the application
can end without issuing an RDML sign-off. In that case, RDM manages
the stack and heap differently. As explained above, the stack is simply
freed, but pseudoconversational transactions must be able to access
their views in each task making up the application. So a view opened in
one task of a pseudoconversation may still be open in later tasks of the
application. For this reason, the contents of an RDM application’s heap
must be available to all tasks making up the application. RDM preserves
the contents of the heap for the next task in the application. There must
therefore be as many heaps as signed-on RDM applications, which can
be as high as the C$VOOPTM RDMUSR# value.

It is not always practical to allocate this many heaps. You can conserve
storage by setting HEAP# less than RDMUSR# but there is a
performance trade-off in doing so. When you set these two parameters
this way, RDM writes heaps out to CICS temporary storage and reads
them back in, so that active, executing RDM transactions can share the
heaps. (This I/O is referred to as heap roll-out and roll-in.) When a task
within an RDM pseudoconversational application ends, RDM can
reassign its heap to another RDM transaction that signs on or resumes.
First the heap is rolled out, then it is reassigned to the new transaction. If
this transaction is resuming, its heap is then rolled in.

Chapter 9 Configuring the RDM for your environment

234 P26-8220-64

PDM thread processing
A PDM thread is allocated to a CICS task in the process of having a
PDML serviced, so you should set THREADS no higher than TASKS in a
given CICS interface. If your CICS has a very high transaction rate, you
might observe frequent TFUL statuses. To resolve this problem, you
should increase the CSTXOPRM THREADS value. While a PDML is
being serviced on behalf of a PDM task, its active CICS task is in use.
The limit on the number of concurrent CICS active tasks is the DFHSIT
AMXT (or MXT) value. Therefore, CSTXOPRM THREADS should not be
less than AMXT (or MXT). If you set THREADS less than AMXT (or
MXT) and the number of PDMLs being concurrently serviced in that CICS
reaches the THREADS value, the next PDML attempted fails with a
TFUL status. Similarly, since each active RDM task requires a thread,
you should not set HEAP# less than the value of THREADS. If you do,
then once the number of active RDM tasks reaches HEAP#, the next
task attempting an RDML or resuming fails, due to insufficient resources
for service.

Interaction of options parameters

RDM Administration Guide 235

CICS processing
When any CICS transaction requests a CICS service, the CICS
dispatcher can suspend the transaction if the overall CICS load is heavy.
Suspension is unlikely to occur in a pseudoconversational application,
since its tasks terminate often, which frees their threads. But a
conversational transaction retains its active CICS task throughout the life
of the transaction, so long as it is active. Therefore, if all active CICS
tasks are allocated, suspension of a conversational transaction is more
likely.

A suspended transaction remains signed on to CICS, although it loses its
active CICS task while it is suspended. If the suspended transaction is a
PDM task, the PDM maintains this transaction as a signed-on task. If the
suspension occurs at a PDML, PDM keeps the suspended transaction’s
PDM thread active as well, even though its active CICS task has been
lost. The PDM thread remains active for the duration of the suspension
and afterwards until the PDML completes, at which time the PDM thread
is freed. If another PDM task in that CICS issues a PDML during the
suspension, it is possible that CICS will require more active PDM threads
than the DFHSIT AMXT (or MXT) value.

You should therefore set CSTXOPRM THREADS slightly higher than
DFHSIT AMXT (or MXT), to allow for task suspension. Typically,
AMXT+1 = THREADS or AMXT+2 = THREADS works well. But if your
CICS has a very high transaction rate, you might observe frequent TFUL
statuses. To resolve this problem, increase the CSTXOPRM THREADS
value.

CICS limits
The limit CICS imposes on the number of concurrently active and
executing transactions is the DFHSIT AMXT (or MXT) value. If all of
these are RDM transactions, this means that C$VOOPTM RDMUSR#
should not be less than DFHSIT AMXT (or MXT). If you set RDMUSR#
less than AMXT (or MXT) and the number of active, executing RDM
transactions reaches RDMUSR#, the next new or resuming RDM
transaction that attempts an RDML will receive a failure status due to
insufficient resources for servicing the RDML.

Chapter 9 Configuring the RDM for your environment

236 P26-8220-64

A
Customizing the RDM processing with
user exits

Overview of customizing the RDM processing with user exits
Several exits are available to RDM users. These exits allow you to insert
processing routines before and after database or RDML calls and to
perform validation checking. You can use the database exits and RDML
exits to bypass database or RDML calls, to perform your own database or
user file calls, or to satisfy any special requirements for your system. You
can use the validation exits to perform complex validation logic.

This appendix describes the following types of RDM user exits:

♦ “Using database exits” on page 240 describes the database exits:
environment-independent and environment-dependent variations of
the function exit and the status exit.

♦ “Using RDML exits” on page 249 describes the RDML exits: the
before-function exit and the after-function exit.

♦ “Using validation exits” on page 256 describes validation exits.

The following figure illustrates the location and control flow of the RDM
exit points. In the following explanation, a number in parentheses refers
to the corresponding number in the diagram. If you do not provide an exit
interface at an exit point, processing continues as though that exit point
does not exist.

RDM Administration Guide 237

 CSVXBFOR

 CSVXOFNC

CSVXCFNC

 CSVXOSTA

CSVXCSTA

if PDM not called

if PDM not called

1.

2.

3.

 CSVXSTAT

 CSVXFUNC

 PDM

RDM RDM

 CSVXAFTR

if RDM not called

Call to PDM

 Application

 Application

6.

5.

4.

Call to RDM

Appendix A Customizing the RDM processing with user exits

238 P26-8220-64

Order of events during call to RDM:

1. Application issues RDML command.

2. Control passes to CSVXBFOR (1) and invokes exit interface.

3. If CSVXBFOR denies access to the RDM, then control passes to
CSVXAFTR (see Step 13), else control passes to the RDM.

4. The RDM issues a call to the PDM.

5. Control passes to CSVXFUNC (2) and invokes exit interface.

6. If CSVXFUNC denies access to the PDM, then control passes to
CSVXSTAT (see Step 11), or else control passes directly to one of
the exit points listed in Step 7.

7. Control passes to one of the following environment-dependent exit
points:

For CICS -- CSVXCFNC (3)

For batch -- CSVXOFNC (3)

8. If CSVXCFNC or CSVXOFNC denies access to the PDM, then
control passes to one of the environment-dependent exit points listed
in Step 10, or else control passes to the PDM.

9. The PDM passes control back to the RDM.

10. Control passes to one of the following environment-dependent exit
points:
For CICS -- CSVXCSTA (4)

For batch -- CSVXOSTA (4)

11. Control passes to CSVXSTAT (5) and invokes exit interface.

12. Control passes to the RDM.

13. Control passes to CSVXAFTR (6) and invokes exit interface.

14. Control passes back to the application.

Overview of customizing the RDM processing with user exits

RDM Administration Guide 239

The following table shows RDM user exit programs and the addressing
mode in which receive control in a CICS environment:

Module Addressing mode
CSVXAFTR 24-bit mode
CSVXBFOR 24-bit mode
CSVXCFNC Same addressing mode as the

invoking user application
CSVXCSTA Same addressing mode as the

invoking user application
CSVXFUNC 24-bit mode
CSVXSTAT 24-bit mode
CSVXCVXT 24-bit mode or 31-bit mode*

* If CSVXCVXT is link edited with CSVNPLVS, the exit receives control in

31-bit mode. If CSVXCVXT is not linked with CSVNPLVS, it receives
control in 24-bit mode (via a CICS command level LINK).

Using database exits
Use the database exits to insert routines at the RDM processing level,
which is environment-independent, and/or at the physical data manager
(PDM) call processing level, which is environment-dependent. The
following figure illustrates the processing flow of the four database exits.
The available database exits and their associated names are:

Environment- independent batch

Exits

Environment-
independent

Batch

CICS

Function CSVXFUNC CSVXOFNC CSVXCFNC
Status CSVXSTAT CSVXOSTA CSVXCSTA

Appendix A Customizing the RDM processing with user exits

240 P26-8220-64

C C

B

User-Exit
Coded?

User-Exit
Processing

Set Function
Return Code

Set Function
Return Code

to Process

Status Exit

Function ExitProcess
PDM Call?

D

Call PDM

C

Go to
Status Exit

User-Exit
Processing

Set Status
Return Code

Set Status
Return Code
to Process

User-Exit
Coded?

D

E E

B

A

Go to
Function

Exit

D

E

Process
Status? A

Diagnose
Status

Continue
RDM

Processing

Using database exits

RDM Administration Guide 241

Using environment-independent database exits
You must always link edit the environment-independent exits
(CSVXFUNC and CSVXSTAT) with the RDM run-time processor prior to
program execution. The system provides default exits that give the
parameter list back to RDM unchanged, meaning to go ahead and
process normally. You can write these exits in Assembler, FORTRAN, or
COBOL. The contents of the general purpose registers on entry to the
exit program are as follows:

Register Contents
1 Points to the address list of the function request

parameters.
13 Contains the address of the standard register save

area. You must save and restore all registers that your
routine might alter.

14 Contains the standard branch return register address
for return to the RDM run-time processor from your exit
routine.

15 Contains the address of the user exit. You may use
this register to initialize the user exit base register.

Appendix A Customizing the RDM processing with user exits

242 P26-8220-64

Using the function exit (CSVXFUNC)
Use the CSVXFUNC exit to analyze and modify, or bypass, the operation
of the physical data manager (PDM). RDM calls CSVXFUNC just before
calling the PDM with a physical data manipulation language (DML)
function request. Upon entry to CSVXFUNC, register 1 points to an
address list of the physical DML function’s parameters (see the following
figure). The system provides a null exit which gives the parameter list
back to RDM unchanged, meaning to go ahead and process. You can
code this exit to do your own unsupported file structure processing. A
return code of 1 causes RDM to skip the PDM call. RDM proceeds to call
the PDM if the return code has any value other than 1. Prior to entry, the
RDM run-time processor initializes STATUS to **** and SKIPDBMS to 0.

If you do not bypass the PDM call, you may not alter the FUNC
parameter. You may, however, modify any of the other parameters. It is
possible to do your own file access, change the data areas, set a return
code of 1 in SKIPDBMS, return to the run-time processor, and RDM
would bypass the PDM call. If you do, you must set a PDM status code if
an error occurs, or leave it as **** if no error occurs, since the run-time
processor checks the status to see whether the PDM was called or not.
You may use your own 4-character status code. This would be recorded
on the console log, and the standard PDM error message would be
passed to the application message area. Or, you may use PDM status
codes, which RDM would intercept.

 Register 1

Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 Addr 7 Addr 8 Addr 9 Addr 10

Addr1 FUNC 5-byte function
Addr2 STATUS 4-byte status code
Addr3 FILE 4-byte filename
Addr4 REFER 4-byte reference parameter or variable length qualifier
Addr5 LINK 8-byte linkpath name
Addr6 KEY Variable length control-key
Addr7 LIST Variable length element-list
Addr8 DATA Variable length data area
Addr9 MODE 4-byte parameter list delimiter
Addr10 SKIPDBMS 4-byte return code (binary fullword)
 1 – skip PDM call
 All other values – do not skip PDM call

Using database exits

RDM Administration Guide 243

Using the status exit (CSVXSTAT)
Use the CSVXSTAT exit to analyze the return status from a physical data
manager (PDM) function call and to take appropriate action when the
PDM returns an unsuccessful status. Upon entry to the exit program,
register 1 points to an address list of the physical data manipulation
language (DML) function request parameters (see the following figure).
The system provides a null exit which gives the parameter list back to
RDM unchanged, meaning to go ahead and process normally. You can
code this exit to cause RDM to bypass the status code check and try the
PDM call again. A return code of 1 indicates that you want RDM to call
the PDM again with the same function. Any other value indicates RDM
should not repeat the PDM call but continue processing. RDM does not
alter any of the parameter values before calling the exit.

Within this exit, you can interrogate the status that was returned either
from the function exit (CSVXFUNC) or from the normal PDM call. You
can also examine the data and send a return code to RDM depending on
the results. A repeat of the PDM call also invokes the CSVXFUNC exit.
Therefore, if you have coded the CSVXFUNC exit, it executes again if
you set LOOP to 1.

 Register 1

Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 Addr 7 Addr 8 Addr 9 Addr 10

Addr1 FUNC 5-byte function
Addr2 STATUS 4-byte status code
Addr3 FILE 4-byte filename
Addr4 REFER 4-byte reference parameter or variable length qualifier
Addr5 LINK 8-byte linkpath name
Addr6 KEY Variable length control-key
Addr7 LIST Variable length element-list
Addr8 DATA Variable length data area
Addr9 MODE 4-byte parameter list delimiter (RLSE or END.)
Addr10 SKIPDBMS 1-byte return code (binary fullword)
 1 – skip PDM call
 All other values – do not skip PDM call

Appendix A Customizing the RDM processing with user exits

244 P26-8220-64

Using environment-dependent database exits
The RDM environment-dependent run-time interface module uses weak
external references to the environment-dependent exits. These exits are
optional. Use them cautiously and only when necessary. The system
provides null exits, but only in source code for use as examples.

You can write these exits only in assembler language because the
register conventions are nonstandard. Contents of the general purpose
registers on entry to the exit program are as follows:

Register

Batch
CSVXOFNC/CSVXOSTA

CICS
CSVXCFNC/CSVXCSTA

11 Parameter list Parameter list
12 - EIB
13 - EISTG
14 Return address Return address
15 Exit entry point Exit entry point

Using database exits

RDM Administration Guide 245

RDM supplies no register save area to the exits. The RDM restores its
registers when the exit returns control to it. The parameter list (pointed to
by register 11) consists of a list of three addresses:

Register 11

Addr1 Addr2 Addr3

The three addresses are as follows:

1. The address of the physical data manager request parameters
address list. This list of addresses is variable in length according to
the physical data manager request to be processed.

2. The address of the exit return code.

3. The address of a 256-byte work area available to the exit. In a
multitasking environment (CICS), the contents of the work area
remain unchanged from one physical data manager call to the next
until the application issues an RDM SIGN-ON or SIGN-OFF
command. However, the address of the work area may change from
call to call; therefore, do not store any addresses that point to the
work area. A SIGN-ON or SIGN-OFF command initializes the work
area to binary zeros. Note this work area is also passed to the
validation exit.

Appendix A Customizing the RDM processing with user exits

246 P26-8220-64

 You must link your environment-dependent exits with the appropriate
RDM interface modules or phases as follows:

♦ Under OS/390:

- To link CSVXOFNC and/or CSVXOSTA with batch RDM:
Insert an INCLUDE statement for each exit in the link deck
CSVIBINT. Put the INCLUDE(s) for your exit(s) anywhere
after the INCLUDE for module CSVIVSCI and before the
NAME statement. Then use this link deck to relink the
module CSVIBINT.

- To link CSVXCFNC and/or CSVXCSTA with online RDM:
Insert an INCLUDE statement for each exit in the link deck
CSVNPLVS. Put the INCLUDE(s) for your exit(s)
immediately before the ENTRY statement. Then use this link
deck to relink the module CSVNPLVS.

- To link CSVXOFNC and/or CSVXOSTA with batch DBAID:
Insert an INCLUDE statement for each exit in the link deck
CSVIBDBA. Put the INCLUDE(s) for your exit(s) anywhere
before the ENTRY statement. Then use this link deck to
relink the module CSVIBDBA.

♦ Under VSE:

- To link CSVXOFNC and/or CSVXOSTA with batch RDM:
Insert an INCLUDE statement for each exit in the link deck
CSVJBINT on the relocateable library. Put the INCLUDE(s)
for your exit(s) anywhere after the PHASE statement and
before the ENTRY statement. Then use this link deck to
relink the phase CSVJBINT.

- To link CSVXCFNC and/or CSVXCSTA with online RDM:
Insert an INCLUDE statement for each exit in the link deck
for CSVNPLVS. Put the INCLUDE(s) for your exit(s)
immediately before the ENTRY statement. Then use this link
deck to relink the phase CSVNPLVS.

- To link CSVXOFNC and/or CSVXOSTA with batch DBAID:
Insert an INCLUDE statement for each exit in the link deck
CSVJBDBA on the relocateable library. Put the INCLUDE(s)
for your exit(s) anywhere after the PHASE statement and
before the ENTRY statement. Then use this link deck to
relink the phase CSVJBDBA.

Using database exits

RDM Administration Guide 247

Your SUPRA Server job control language (JCL) library or source
statement library contains a sample JCL member named TXJLINK for
link editing Cincom software. Samples are subject to change. See the
SUPRA Server JCL library or source statement library member
TXJ$INDX for a list showing this and other JCL samples.

OS/390 See the SUPRA Server macro library or source statement library
member TX$IINDX for a list of link decks. See the SUPRA Server macro
library or source statement library member TX$$INDX for a list of
different kinds of samples.

Using the function exit (CSVXOFNC or CSVXCFNC)
RDM invokes the environment-dependent function exit after the
environment-independent function exit (CSVXFUNC; see “Using the
function exit (CSVXFUNC)” on page 243) and before the physical data
manager (PDM) call processing. Use the function exit to analyze and
modify (or bypass) the operation of the PDM call. You can code this exit
to do your own unsupported file structure processing. RDM skips the
PDM call if the exit returns a value of 1 in SKIPDBMS; RDM proceeds to
call the PDM if the exit returns any value other than 1. RDM initializes
SKIPDBMS to 0 before calling the exit.

Using the status exit (CSVXOSTA or CSVXCSTA)
RDM invokes the environment-dependent status exit after physical data
manager (PDM) processing and before the environment-independent
status exit (CSVXSTAT; see “Using the status exit (CSVXSTAT)” on
page 244). Use the status exit to analyze the status returned from a
PDM call and to take the appropriate action. You can also use this exit to
return to the PDM and retry an unsuccessful request. A return code
(LOOP) of 1 indicates that you should repeat the PDM function. Any
other value means that you should not repeat the PDM call but continue
processing.

Appendix A Customizing the RDM processing with user exits

248 P26-8220-64

Using RDML exits
The CSVXBFOR and CSVXAFTR exits were created so you can analyze,
modify, or bypass the operation of RDM. RDM invokes CSVXBFOR
before performing any RDM function, and invokes CSVXAFTR after
performing any RDM function. These exits allow you to bypass normal
sign-on and sign-off procedures and to perform any other functions.

All RDML exits are entered in 24-bit addressing mode (AMODE=24).
Your exit code must switch to 31-bit addressing mode if your exit issues
commands that require 31-bit addressing capability. If your exit switches
to 31-bit addressing mode, it must switch back to 24-bit mode before
returning to RDM.

Under VSE/ESA, the AMODE considerations are the same as for
OS/390/XA or OS/390/ESA. Under VSE/SP, all exits are entered in
AMODE-24. AMODE-31 is not available to VSE/SP.

The system provides default exits which give the parameter list back to
RDM unchanged, indicating RDM should process normally. You may
write these exits in Assembler, FORTRAN, or COBOL. Contents of the
general purpose registers on entry to the exit program are as follows:

Register Contents
1 Points to the address list of the RDM function request

parameters.
13 Contains the address of the standard register save area.

You must save and restore all registers that your routine
might alter.

14 Contains the standard branch return register address for
return to the RDM run-time processor from your exit
routine.

15 Contains the address of the user exit. Use this register
to initialize the user exit base register.

Using RDML exits

RDM Administration Guide 249

Using the before-function exit (CSVXBFOR)
Use the CSVXBFOR exit to analyze and modify, or bypass, the operation
of RDM. RDM invokes CSVXBFOR just before performing any RDM
function. Upon entry to the exit program, register 1 points to an address
list of the RDM function request parameters (see the following figure).

Register 1

Addr2 Addr3 Addr4 Addr5Addr1

Addr1 CONTROL
Addr2 DATA
Addr3 SELECT
Addr4 LIST
Addr5 SKIPDML

SKIPDML is the return code for the exit. RDM sets SKIPDML to 0 before
calling the exit. If the exit sets SKIPDML to 1, RDM skips processing of
the RDM function. However, RDM still calls the CSVXAFTR exit. If
SKIPDML has any other value than 1, RDM processes the function and
then calls the CSVXAFTR exit.

If you let RDM process the function, you may not alter the operation field
in the TIS-CONTROL-AREA. You may, however, modify any of the other
parameters. You can use this exit to perform additional sign-on and
sign-off security checks and to monitor the activity of a particular file or
view.

Because RDM used previous positioning information, use care if you
intend to change any of the parameters passed to RDM for positioning
information.

The release tape provides a default CSVXBFOR exit. It sets SKIPDML
to 0 and does not modify any other parameters. It is linked by default
with RDM. The source of the default exit is in the MACLIB member
CSVXBFOR.

Appendix A Customizing the RDM processing with user exits

250 P26-8220-64

The contents of the parameters depend on the RDM command. If the
command is GET, UPDATE, INSERT, DELETE, MARK, or RELEASE,
the contents are the following:

 Address
CONTROL TIS-CONTROL-AREA (see the DSECT C$VTISCN

for the contents).
DATA User view data area as described by the INCLUDE

statement for the view-name.
SELECT Time-date stamp (Do not modify).
LIST User view attribute data.
SKIPDML 4-byte return code (binary fullword integer).

1—Skip the RDML function.
Any other value—Do not skip the RDM function.

If the command is SIGN-ON, SIGN-OFF, FORGET, COMMIT, RESET,
or NO-OP, the contents are the following:

 Address
CONTROL TIS-CONTROL-AREA (see the DSECT C$VTISCN

for the contents).
DATA TIS-CONTROL-AREA.
SELECT TIS-CONTROL-AREA.
LIST TIS-CONTROL-AREA
SKIPDML 4-byte return code (binary fullword integer):

1—Skip the RDM function.
Any other value—Do not skip the RDM function.

Using RDML exits

RDM Administration Guide 251

Using the after-function exit (CSVXAFTR)
Use the CSVXAFTR exit to analyze the return status from an RDM
function call and to take appropriate action when an unsuccessful status
is returned. Upon entry, register 1 points to an address list of the RDM
function request parameters (see the following figure) which contains the
values set by the CSVXBFOR exit and RDM’s processing of the request.

LOOPDML is the return code for the exit. RDM sets LOOPDML to 0
before calling the exit. If the exit sets LOOPDML to 1, RDM repeats the
processing of the RDML function. This processing includes calling the
CSVXBFOR exit again. If LOOPDML has any value other than 1, RDM
returns to the program that issued the RDM function.

The release tape provides a default CSVXAFTR exit. It sets LOOPDML
to 0 and does not modify any other parameter. It is linked by default with
RDM. The source of the default exit is in the MACLIB member
CSVXAFTR.

Register 1

Addr2 Addr3 Addr4 Addr5Addr1

Addr1 CONTROL
Addr2 DATA
Addr3 SELECT
Addr4 LIST
Addr5 LOOPDML

Appendix A Customizing the RDM processing with user exits

252 P26-8220-64

The contents of the parameters depend on the RDM command. If the
command is GET, UPDATE, INSERT, DELETE, MARK, or RELEASE,
the contents are the following:

 Address
CONTROL TIS-CONTROL-AREA (see the DSECT C$VTISCN

for the contents).
DATA User view data area as described by the INCLUDE

statement for the view-name.
SELECT Time-date stamp (Do not modify).
LIST User view attribute data.
LOOPDML 4-byte return code (binary fullword integer):

1—Skip the RDM function.
Any other value—Do not skip the RDM function.

If the RDM command is SIGN-ON, SIGN-OFF, FORGET, COMMIT,
RESET, or NO-OP, the contents are the following:

 Address
CONTROL TIS-CONTROL-AREA (see the DSECT C$VTISCN

for the contents).
DATA TIS-CONTROL-AREA.
SELECT TIS-CONTROL-AREA.
LIST TIS-CONTROL-AREA.
LOOPDML 4-byte return code (binary fullword integer):

1—Execute this RDM function again.
Any other value—Continue processing and return to
the program that issued the RDM function.

Using RDML exits

RDM Administration Guide 253

Using the TASKID exit (CSVXTSID)
Use the CSVXTSID exit to analyze and modify, or bypass a task ID which
is attempting to access RDM. RDM invokes CSVXTSID before
performing any RDM function. Upon entry to the exit program, register 1
points to an address list of the RDM function request parameters. The
return code from this exit is not tested by RDM.

Addr 1 Addr 3 Addr 4 Addr 5-8 Parm 9Parm 9Addr 2

Register 1

Addr 10

Addr 1 Reserved for future use. Do not modify.

Addr 2 Reserved for future use. Do not modify.

Addr 3 Address of the CICS DFHEIB (EXEC Interface) control
block for this task. Do not modify.

Addr 4 Address of the CICS DFHEISTG (EXEC Interface
Storage) control block for this task. Do not modify.

Addr 5-8 Reserved for future use. Do not modify.

Parameter 9 Task ID in the following format:

 byte 1 = T (terminal task)

 bytes 2-5 = Contents of the EIBTRMID field

 bytes 6-8 = Reserved

Addr 10 Reserved for future use. Do not modify.

This exit is called only when processing a terminal task.

Appendix A Customizing the RDM processing with user exits

254 P26-8220-64

The CSVXTSID exit is called via a BALR R14, R15 instruction. General
purpose register contents are:

 R0 Unpredictable

 R1 Parameter list

 R3-12 Unpredictable

 R13 Standard 18 fullword save area

 R14 Return address in RDM

 R15 Entry point of CSVXTSID

You must restore registers to their original contents before returning
control to RDM.

Using RDML exits

RDM Administration Guide 255

Using validation exits
RDM supports validation exits that allow the DBA to write more complex
validation logic than is available using range checking or validation tables.
See “Validation options” on page 41 for information on how RDM
performs validation checking such as range, table, and validation exits.

You define a validation exit in the Directory using the Physical Field entity.
Refer to the SUPRA Server PDM Directory Online User’s Guide (OS/390
& VSE), P26-1260, or the SUPRA Server PDM Directory Batch User’s
Guide (OS/390 & VSE), P26-1261, for information on defining validation
options for a physical field. To specify the validation exit, enter E in the
VALIDATION OPTION field of the Physical Field entity. Specify the exit
name in the VALIDATION EXIT field.

See the example listings at the end of this section for sample code used
to switch to 24-bit or 31-bit mode.

For more information on the addressing mode for RDML exits, see
“Using RDML exits” on page 249.You can specify many different
validation exit names in the Directory. However, for a particular
environment, RDM collects all validation exits into one validation exit
module. The validation exit module names and register conventions are:

Module name OS/390 & VSE batch CSVXIVXT OS/390 & VSE CICS CSVXCVXT
Register 1 Parameter list Parameter list
Register 11 - -
Register 12 - EIB
Register 13 - EISTG
Register 14 Return address Exit module entry
Register 15 Exit module entry point -

The batch validation exit module, CSVXIVXT, is a separate load module.
It is loaded dynamically the first time a view is opened that uses a
physical field that specifies a validation exit. No register save area is
provided. RDM saves and restores its registers. The return address is
provided in register 14.

Appendix A Customizing the RDM processing with user exits

256 P26-8220-64

You can link the CICS Validation Exit module with the CSVNPLVS load
module by adding an INCLUDE to the CSVNPLVS link deck for your exit
program. It will be called by BALR 14,15 instruction and receive control
in 31-bit mode.

Alternatively, the CICS Validation Exit module can be a separate load
module. This requires that you add an entry for the exit program to the
PPT. In this case, the Validation Exit receives control in 24-bit
addressing mode. Normal CICS linkage conventions apply. The exit
module must return by using a CICS RETURN statement.

Sample validation exit modules are supplied with RDM. Use them as
starting points for developing your own exits. The parameter list contains
twelve addresses, as follows:

Register 1
or Register 11

Addr1 Addr2 Addr3 Addr4 Addr5 Addr6 Addr7 Addr8 Addr9 Addr10 Addr11 Addr12

1. Address of a 256-byte work area available to the exit. This is the
same work area provided to the environment-dependent database
exits. The contents of the work area remain unchanged from one
call of an exit to the next. However, an RDML SIGN-ON or
SIGN-OFF command initializes the work area to binary zeroes. The
address of the work area may change from one exit call to the next;
therefore, do not store any address that points to the work area.

2. Address of the return code. The return code is a 4-byte binary
integer. The values the validation exit sets are:

-1 Invalid or unsupported validation exit name
0 Valid value or valid exit name
1 Invalid value

3. Address of the 8-character exit name. This is the exit name specified
in the Physical Field entity on the Directory. If the exit name is invalid
or not supported, the exit module sets the return code to -1.

4. Address of the 30-character user name. The user name provided on
the RDML SIGN-ON command.

Using validation exits

RDM Administration Guide 257

5. Address of the 30-character view name. The name of the view that
contains the column being validated.

6. Address of the 30-character column name.

7. Address of the value to be validated. The length and format of this
field varies.

8. Address of the 1-character type of the value:

C Character

P Packed

Z Zoned

B Binary

F Floating Point

K Kanji

9. Address of the length of the value. The length is a 4-byte binary
integer.

10. Address of the 1-character signed flag for the value:

Y The value is signed.

N The value is not signed.

11. Address of the number of decimals in the value. The number is a
4-byte binary integer.

12. Address of the 1-character operation type. This field indicates the
type of RDML request that caused the call of the validation exit:

G GET RDML
I INSERT RDML
U UPDATE RDML
O Open of the view. A value is not passed. Exit module should

only validate the exit name. The validation exit should not
change any parameters except for the return code. RDM calls
the validation exit for each column in the view that requires a
validation exit. For update requests, only columns that have
been changed are validated.

Appendix A Customizing the RDM processing with user exits

258 P26-8220-64

When using derived views, the first view to see the data calls the
validation process. That is, for GET RDML base view processing calls
the validation process. For UPDATE and GET, the derived view
processing calls the validation process.

Whenever RDM opens a view requiring validation exits, RDM calls the
validation exit module to verify that it supports the exit name. If the
validation exit module cannot support the exit name, it should set a -1
return code. If during an OPEN, RDM receives a -1 return code or it
cannot load or find the validation exit module, RDM returns a function
status indicator (FSI) indicating a fatal error and a message indicating the
exit name for a column is invalid. If CSVXCVXT is link edited with
CSVNPLVS, the Validation Exit receives control in 31-bit mode. Your exit
code must switch to 24-bit mode if it issues commands that require 24-bit
addressing capability. If your exit code switches to 24-bit mode, it must
switch back to 31-bit mode before returning to RDM.

If CSVXCVXT is not linked with CSVNPLVS, it receives control in 24-bit
mode via a CICS command level LINK. Your exit code must switch to
31-bit mode if it issues commands that require 31-bit addressing
capability. If your exit code switches to 31-bit mode, it must switch back
to 24-bit mode before returning to RDM.

The following code listing shows an example of code to switch to 24-bit
addressing mode and then back to the original addressing mode. To
switch from 24-bit mode to 31-bit mode and back, see the sample code
shown in the next code listing.
**

 CODE TO SWITCH TO AMODE-24

**

 LA R9,LABELY SETUP FOR RETURN TO ORIGINAL

 LA R14,LABELX SETUP FOR SWITCH TO AMODE-24

 BSM R9,R14 CHANGE TO AMODE-24, SAVE AMODE

 DC H'0' (NEVER WILL BE EXECUTED)

LABELX DS 0H

 Your existing code which must execute in AMODE-24 is here.

**

 CODE TO RESTORE AMODE

**

 BSM 0,R9 RESTORE AMODE

 DC H'0' (NEVER WILL BE EXECUTED)

LABELY DS 0H

Using validation exits

RDM Administration Guide 259

The following code listing shows an example of code to switch from the
current addressing mode to 31-bit mode, and then to restore to the
original addressing mode. To switch to 24-bit mode and back, see the
sample code shown in the preceding listing.
BEGIN DS 0H

*

 STM R14,R12,12(R13) SAVE THE CALLERS REGISTERS

 L R10,LABEL1 ESTABLISH PERMANENT BASE,

* SET AMODE 31 BIT

 LA R12,LABEL2 GET ADDRESS OF EXIT POINT

 BSM R12,R10 SAVE CALLER'S AMODE, SET TO 31

 DS 0F ALIGNMENT

LABEL1 DC A(BEGIN31+X'80000000')

BEGIN31 DS 0H

******* NOW IN 31 BIT MODE SO WE CAN MANIPULATE EXTENDED CSA

 ST R12,SAVEMODE SAVE MODE REGISTER

... code that runs in 31-bit mode goes here ...

RETURN DS 0H

 L R12,SAVEMODE RESTORE MODE REGISTER

 L R13,4(,R13) RESTORE ORIGINAL SAVE AREA

 BSM 0,R12 RESET CALLER'S AMODE

LABEL2 DS 0H

 L R14,12(,R13) RESTORE RETURN ADDRESS

 LM R0,R12,20(R13) RESTORE CALLER'S REGISTERS

 BR R14 RETURN WITH RC IN R15

SAVEMODE DS F MODE REGISTER SAVE AREA

Although the parameters in the parameter list passed to the user exits
are in 24-bit addressable storage, the parameter list may contain
addresses that are in 31-bit storage.

Appendix A Customizing the RDM processing with user exits

260 P26-8220-64

B
Setting the online RDM options with
macros

Overview of setting the online RDM options with macros
Set or revise your online RDM options for OS/390 or VSE with the
C$VOOPTM macro. Choose the parameter values for the options you
want. Your SUPRA Server macro library contains the options module
CSVOOPTM (OS/390) or CSVDOPTM.A (VSE) which invokes the macro
C$VOOPTM. Code the parameters you choose in the options module
CSVOOPTM or CSVDOPTM.A (or a copy). Assemble and link the
options module as the module CSVOOPTM. Online RDM loads the
module. For VSE, the Assembler output is CSVDOPTM.OBJ.

Your SUPRA Server job control language (JCL) library contains a sample
member named TXJVOPTM for assembling and linking CSVOOPTM.
Samples are subject to change. See the SUPRA Server JCL library
member TXJ$INDX for a list showing this and other JCL samples. See
the SUPRA Server Macro library member TX$$INDX for a list of different
kinds of samples (UCLCODE, JCL, etc.). Refer to the SUPRA Server
PDM and Directory Administration Guide (OS/390 & VSE), P26-2250, for
more information on JCL samples.

RDM Administration Guide 261

C$VOOPTM ASMDATE = '93.09.01'
' 'yy.mm.dd
























 X

 ,ASMTIME= '23.59.59'
' 'hh.mm.ss
























 X

 ,BLKSIZE= 4K
Knnn
























 X

 ,CICS= NO
YES
























 X

 ,CTNXNS = 5
nnnnn




















 X

 ,GETMAIN= ANY
BELOW
























 X

 ,GLOBSIZ =
2M

M
K

nn
nnnnn



































 X

 ,HEAP# = 5
nnn




















 X

 ,HEAPSZ = 32K
Knnnn
























 X

 ,IMSRDMP = 241
nnn




















 X

 ,IMSSMPL = 65536
nnnnnnn




















 X

 ,IMSSMPX = 10240000
nnnnnnn




















 X

Appendix B Setting the online RDM options with macros

262 P26-8220-64

 ,IMSSPCO = CSGOPTNS
XXXXXXXX
























 X

 ,IMSSPOL = 241
nnn




















 X

 ,PFILE = LV00
xxxx




















 X

 ,RDMUSR#= 5
nnnnn




















 X

 ,RPTSIZE = 32K
Knn
























 X

 ,STACKSZ = 16K
Knn
























 X

 ,SYNCTYP =
Y
N
R

































 X

 ,SYSTEM = OS
DOS

























 X

 ,TCISIZE = 32K
Knn
























 X

 ,TSLVP = PLVS
xxxx




















 X

 ,TSROLL = A
M
























 X

Overview of setting the online RDM options with macros

RDM Administration Guide 263

ASMDATE = '93.09.01'
' 'yy.mm.dd













Description Optional. Specifies the Assembly Date stamp for the generated options
table.

Default '93.09.01'

Format 6 numeric characters delimited by periods and enclosed in single
quotation marks.

Considerations

♦ OS/390 users can code ASMDATE = &SYSDATE to obtain the
current system date.

♦ VSE users must code the current date value manually if they wish to
accurately timestamp the resultant options table generation. The
VSE Assembler does not support the global value &SYSDATE.

,ASMTIME = '23.59.59'
' 'hh.mm.ss













Description Optional. Specifies the Assembly Time stamp for the generated options
table.

Default '23.59.59'

Format 6 numeric characters delimited by periods and enclosed in single
quotation marks.

Considerations

♦ OS/390 users can code ASMTIME = &SYSTIME to obtain the current
system time.

♦ VSE users must code the current time value manually if they wish to
accurately timestamp the resultant options table generation. The
VSE Assembler does not support the global value &SYSTIME.

Appendix B Setting the online RDM options with macros

264 P26-8220-64

,BLKSIZE = 4K
Knnn













Description Optional. Indicates the block size (physical record size) of the heap roll
area.

Default 4K

Options 4K–28K

Considerations

♦ The block size must be a multiple of 4K.

♦ The block size should be as close as possible to the maximum track
size of your physical device without exceeding it. For IBM 3390 disk
devices, Cincom recommends a block size of 28K.

♦ The heap size is rounded up to be a multiple of the block size.

, CICS = NO
YES













Description Optional. Indicates whether RDM is running under CICS.

Default NO

Considerations

♦ If you are running under CICS, you must code CICS=YES.

♦ If you are running under IMS/DC, you must code CICS=NO or let it
default to NO.

,CTNXNS = 5
nnnnn









Restriction This parameter is ignored unless you are running SPECTRA under CICS.

Description Optional. Specifies the number of heaps for use by SPECTRA.

Default 5

Options 1–32767

Overview of setting the online RDM options with macros

RDM Administration Guide 265

,GETMAIN= ANY
BELOW













Description Optional. Specifies whether to use memory below the 16 MB line for
RDM heaps and global views.

Default ANY

Options ANY Allocate RDM heaps and global views using the LOC=ANY
option of the IBM macro GETMAIN. In practice, this implies
they are allocated above the 16 MB line.

BELOW Allocate RDM heaps and global views below the 16 MB line.

,GLOBSIZ =
2M

M
K

nn
nnnnn

















Description Optional. Specifies the size of the memory area for storing global views.

Default 2M

Format 1–5 numeric characters followed by K, or 1–2 numeric characters
followed by M

Considerations

♦ Under CICS, if you set this parameter to zero, RDM will allocate NO
global view memory and WILL NOT initialize a global view area. If
you want to have a global view area, you MUST enter a non-zero
value for this parameter or leave the default value of 2 MB.

♦ If you allocate global views below the 16 MB line by coding
GETMAIN=BELOW, you must specify a global view area size that fits
below the line in your address space. The default size will almost
certainly be too large.

Appendix B Setting the online RDM options with macros

266 P26-8220-64

,HEAP# = 5
nnnnn









Description Optional. Specifies the number of heaps to be allocated.

Default 5

Options 1–32767

Considerations

♦ HEAP# controls the concurrency of tasks. RDMUSR# controls the
maximum number of tasks allowed to sign on to RDM.

♦ If HEAP# is less than RDMUSR#, rolling of pseudoconversational
task context will occur when the number of tasks signed on to RDM
exceeds HEAP#.

♦ If HEAP# is equal to RDMUSR#, no rolling of pseudoconversational
task context will occur.

♦ If HEAP# is greater than RDMUSR#, you are wasting space. In this
situation, heaps will be allocated but never used, because RDMUSR#
limits the number of tasks allowed to sign on to RDM.

,HEAPSZ = 32K
Knnnn













Description Optional. Specifies the size of the heaps to be allocated.

Default 32K The default options module distributed with SUPRA Server
specifies a HEAPSZ of 64K.

Options 4K–1020K

Considerations

♦ This size must be at least as large as the size specified by the
BLKSIZE parameter.

♦ The heap size is rounded up to be a multiple of the block size.

Overview of setting the online RDM options with macros

RDM Administration Guide 267

,IMSRDMP = 241
nnn









Description Optional. Specifies the number of the memory subpool where RDM work
space is allocated.

Default 241

Format 3 numeric characters

Considerations

♦ If you are running under CICS, Cincom recommends you code
IMSRDMP=0.

♦ The memory subpool number specified by this parameter must be
the same as that specified by the IMSSPOL parameter.

,IMSSMPL = 65536
nnnnnnn









Restriction This parameter is ignored unless you are using SPECTRA under CICS.

Description Optional. Specifies the standard memory pool size, in bytes, for
SPECTRA system memory.

Default 65536

Format 1–7 numeric characters

,IMSSMPX = 10240000
nnnnnnn









Restriction This parameter is ignored unless you are using SPECTRA under CICS.

Description Optional. Specifies the maximum total amount of memory, in bytes,
allowed for SPECTRA system memory.

Default 1024000

Format 7 numeric characters

Consideration

♦ Cincom recommends you allow this value to default to 1024000.

Appendix B Setting the online RDM options with macros

268 P26-8220-64

,IMSSPCO = CSGOPTNS
XXXXXXXX













Restriction This parameter is ignored unless you are using SPECTRA under CICS.

Description Optional. Specifies the name of the SPECTRA options module
(assembled using the macro C$GOPTNS).

Default CSGOPTNS

Format 1–8 alphanumeric characters or @, #, $; first character must be
alphabetic or @, #, $

,IMSSPOL = 241
nnn









Description Optional. Specifies the number of the memory subpool where SPECTRA
work space is allocated.

Default 241

Format 1–3 numeric characters

Considerations
♦ Cincom recommends you always code IMSSPOL=0.

♦ This field in the control block is accessed only by the memory
manager utility CSVOCSA.

♦ The memory subpool number specified by this parameter must be
the same as that specified by the IMSRDMP parameter.

Overview of setting the online RDM options with macros

RDM Administration Guide 269

,PFILE = LV00
xxxx









Restriction This parameter is ignored unless you are using SPECTRA under CICS.

Description Optional. Specifies the name of the SPECTRA Personal File.

Default LV00

Format 4 alphanumeric characters or @, #, $; first character must be alphabetic
or @, #, $

,RDMUSR# = 5
nnnnn









Restriction This parameter is ignored under IMS/DC.

Description Optional. Specifies the maximum number of concurrent active RDM
users.

Default 5

Format 1–5 numeric characters (1–32767)

Considerations

♦ If RDMUSR# exceeds HEAP#, heap storage is rolled to temporary
auxiliary storage (for pseudoconversational tasks).

♦ If the number of users attempting to use RDM exceeds RDMUSR#,
functional status indicators of “I” (insufficient resources) will be
returned.

♦ RDMUSR# is used internally by RDM CICS XA support to build a
table which determines how many heaps can be accessed.

♦ RDM allocates a stack only for the life of an RDML command (a
stack will be allocated at the beginning of an RDML command and
freed at the end of that command).

See also the considerations listed under the HEAP# parameter in this
section, since these two parameters work in unison.

Appendix B Setting the online RDM options with macros

270 P26-8220-64

,RPTSIZE= 32K
Knn













Description Optional. Indicates the amount of memory in the RPT table to be used
for DBAID utility requests.

Options 4K–31K

,STACKSZ = 16K
Knn













Description Optional. Specifies the size of the stacks to be allocated.

Default 16K

Format 1–2 numeric characters followed by K
Considerations

♦ This size must not be smaller than 16K or larger than 63K.

♦ One heap and one stack comprise one slot.

,SYNCTYP =
Y
N
R

















Description Optional. Specifies the type of sync point performed by RDM.

Options Y Full sync point/rollback

N No sync pointing

R Commit sync point; no rollback

,SYSTEM = OS
DOS













Description Required. Specifies the operating system type in which RDM will be
used.

Default OS

Options OS RDM is used in an OS/390/XA or OS/390/ESA system.

 DOS RDM is used in a VSE/SP or VSE/ESA system.

Overview of setting the online RDM options with macros

RDM Administration Guide 271

,TCISIZE= 32K
Knn













Description Optional. Specifies the Control Interval size for the temporary storage file
on auxiliary storage.

Format 1–2 numeric characters followed by K

Consideration This value must be the same as the Control Interval size you specify for
your VSAM auxiliary file.

,TSLVP = PLVS
xxxx









Restriction This parameter is ignored except under CICS.

Description Optional. Specifies the prefix of the CICS temporary storage identifier.

Default PLVS

Format 4 alphanumeric characters or @, #, $; first character must be alphabetic
or @, #, $

Consideration

♦ Cincom recommends you allow this value to default to PLVS.

,TSROLL = A
M













Description Optional. Specifies the type of temporary storage destination for RDM
heap rollout/roll-in.

Options A Roll heaps to auxiliary storage

M Roll heaps to virtual main storage above the 16 MB line

Appendix B Setting the online RDM options with macros

272 P26-8220-64

Index

A

Access
Definition 72
Definitions 64
keyed 33
order of 64

Access Key,and logical key 33
Access methods, impact of

positional relationships 55
Access set, and view binding 125
ACCESS statement, in view

access definition 32, 72
After-function exit, RDML 252
ALL keyword, in ALLOW clause

49
ALL parameter, for DBAID

commands
in BIND command 140
in delete command 153
in UNDEFINE command 203

ALLOW clause
for maintenance 49
in access definition 75

Environment description 122
Application program, RDM

reporting on 223
statistics gathering in 129

Application programmers
and RDM 19
and views 25

Application tasks, types
supported 128

Application, RDM
currentness of 115
linking and executing 226

ASI. See Automatic System
Initialization and Column
Status Indicator (ASI)

AT clause, in DBAID commands
in GET command 162
in MARK command 178

AT CLAUSE, in DBAID
commands

in GO command 164
Automatic

COMMIT 199
disabling 145

hold 162
Automatic RESET, disabling 172
Automatic System Initialization

(ASI) 127

B

Base relations, examples of 76
Base view 20, 24, 29

creating 29
DBAID 63
DBAID and 24
DBAID sample session 106
defining 29
Directory Maintenance and 25,

63
examples 78
generating with Directory

Maintenance 63
global 122
integrity and 87
opening 85
relating to users 130
sources for derived views 64

Batch RDM, and global views
122

Before-function exit, RDML 250
BIND command

an COMMIT command 149
and RESET command 192
and view binding 125
example 141
syntax 140

BIND parameter, in SAVE
command 193

Binding views 125
Blank, as validation option 40
BOUND parameter, in BIND

command 140
Bound views 125
Built-in view commands, in

DBAID 138
BYE command

and SIGN-OFF command 197
and STATS-OFF command 200
and STATS-ON command 201
and view binding 125
syntax 142

RDM Administration Guide 273

C

C$VOOPTM macro 261
format 261
parameters 264

Cascade delete 53
and integrity 97

CAUTIOUS command
and COMMIT command 149
syntax 145

Change
logical 115
physical 115
to files 115

Characters per line, displaying
175

CICS
and global views 122
and recovery 132
processing 236

Cincom Software Selection
Screen 105

COBOL Programmers’ Report
215

Column
defining 64
redundant

in view column definition 68
joins and 43

required 31
required, designating 39

Column definition
examples 71
syntax 64

Column description, displaying
146, 158

Column list, displaying 207
Column name

displaying 143
in COLUMN-DEFN command

146
in COLUMN-TEXT command

146
in view column definition 67
uniqueness 66

Column parameter
in OPEN command 180
in UPDATE command 204

Column Status Indicator (ASI) 58
Column values, shared 54

COLUMN-DEFN command
example 147
syntax 146

Commands
built-in view commands 138
DBAID 133
editing commands 136
example 148
format 135
list 136
reissuing 139
Relational Data Manipulation

language (RDML)
commands 137

statistics commands 138
syntax 148
system commands 136

COMMIT, DBAID command 132
Commits

automatic 199
BIND command 141
CAUTIOUS command 145
DENY command 155
PERMIT command 183
REMOVE command 189
RESET command 192
SAVE command 193

Compound nonunique key 38
Compound unique key 37
Concatenated key 37
Conceptual schema 24
CONST keyword 39
CONST option, in column

definition 39, 66
Context file, RDM 225
Control-key, on PDM file 33
COPY command

example 151
syntax 150

Core-image library 129
CSVLVRES. See RDM, modules
CSVNVRES. See RDM, modules
Currentness of program 115
Currentness of view bindings,

checking 120

Index

274 P26-8220-64

D

Data retrieval, with RDM 55
Data storage areas 226
Data validation, automatic 19
Database

changing contents of 49
IMS

RDM access 23
navigation 55
penetration 56
sample of 50
updating 201

Database user exits, RDM 240
DBA (Database Adminstrator),

function in RDM 27
DBA Report

and view binding 126
described 213

DBA, function in RDM 27
DBAID utility

base views 24
command categories 134
command format 134
commands

built-in view commands 138
non-DBA users 104
RDML 137
statistics 138
system 136

commands list 136
DBA and 27
editing commands 136
examples, online 105
positional parameters 133
signing on 105
uses for 24, 104
view definition with 63

DECLARE clause, on RDM
Programmers' Report 215

Default validation 42
Default values 20

for physical fields 47
DEFINE

and EDIT command 156
and LINE-NUMBER command

174
and LIST command 177
and SAVE command 193
and UNDEFINE command 203
in sample DBAID session 111
syntax 152

Delete
cascade delete 97
column status indicators (ASIs)

60
integrity 89
nullify delete 97
nulls and 45
restrict delete 97

DELETE command
example 154
syntax 153

DENY command 130
and COMMIT command 149
and RESET command 192
syntax 155

Derived view 20, 29
application programmer and 26
building 29
customizing 31
defining 64
defining in sample DBAID

session 111
examples of 80
external schema and 25
global 122
maintenance restrictions 31
prototyping 25
relating to users 130
required columns in 70
size recommended 31
sources of derived views 64
SPECTRA users 25
tailoring 64
testing with DBAID 25, 31, 104

Derived views
processing 85

Directory Maintenance
and base views 24
for defining global views 122
for view definition 63

Directory reports 211
Directory, and RDM 27, 41
DMLPRINT file 184
Domain checking, overriding 67
Domain information, and

NORMAL 40
Domains 40
DTB (Dynamic Transaction

Backout) 132

Index

RDM Administration Guide 275

E

EDIT
and DEFINE command 152
and LINE-NUMBER command

174
and LIST command 177
and SAVE command 193
and UNDEFINE command 203

Editing commands, in DBAID 136
End User Report 218

and view binding 126
END. keyword, with MASS

parameter 169
Environment description

parameters 230
Equal sign, in domain checking

43
ERASE command, syntax 157
Exit

after-function 252
before-function 250
database exits 238
function exit

environment-dependent 245
environment-independent 240

processing flow 237
purpose 237
RDML exits 249
status exit

environment-dependent 245
environment-independent 242

task ID 254
types 237
validation exits 256

option specifying 40
Exit from DBAID 142

in sample DBAID session 114
External schema 25

F

FIELD-DEFN
syntax 158

FIELD-DEFN command
example 158

FIELD-TEXT command 148
File changes 117
File structures 19, 24

and external schema 25
physical changes report 220
RDM context 225

FIRST parameter
in GET command 161
in GO command 164
in INSERT command 168

FKEY
and derived views 90
and insertion integrity 90
and update integrity 90

FOR parameter, in GO command
164

FOR UPDATE parameter, in GET
command 162

Foreign key 52
and deletion integrity 96
defined 87
defining 90
nullifying 96
redundant, with GET

processing 95
value integrity 90

FORGET
syntax 160

FORGET, and MARK command
178

FROM parameter, in GO
command 164

FSI. See Function Status
Indicator (FSI)

Function exit 243, 248
in sample DBAID session 105

Function Status Indicator (FSI)
59

for foreign key on rejected
insert 91

for foreign key on rejected
update 93

G

GENERATE, and base views 29
GET command

and DELETE command 153
and UPDATE command 205
examples 161
in sample DBAID session 111
syntax 161

GET processing
and integrity 95
and null values 44
and validation 44

GETVIS area, RDM loaded in
126

Index

276 P26-8220-64

GIVING clause, in Access
Definition 74

Global view area 122
definition and example 122
in memory 123, 228, 266
performance optimization 122

GO command 137
examples 167
in sample DBAID session 110,

114
syntax 164

H

Hardware requirements for RDM
28

Heaps
allocation of 228
defined 226
number, specifying 265, 267
size, specifying 265

I
Impact of Change Report 220
IMS database

RDM access 23
recovery and 132

IMS/DC, global view support 122
Index

and unbound views 117
as access method 55, 57
deletion integrity 96

INSERT command 137
automatic 51
examples 170
in DBAID session 112
reject 51
syntax 168

INSERT processing 86
and null values 45
and validation 45
integrity 91

Integrity 25
and base views 29
and cascade delete 97
and foreign key value 89, 90
and GET processing 95
and nullify delete 97
and restrict delete 97

centralizing 31
database 19, 24
delete 53, 89, 96
example used in ACCESS

statement 51
examples of 97
insertion 91
maintaining 87
rules for 89
update 93

Internal schema 23

J

JCL samples, RDM in SUPRA
Server libraries 134, 211,
225, 248, 261

Join compatibility 43

K

KEEP command, syntax 172
Key

access with 33
compound nonunique 38
compound unique 37
concatenated 37
constant 33
control-key, PDM file 33
nonunique 33, 38
primary

defined 87
integrity 91

simple nonunique 38
simple unique 36
unique 33

Key, qualifier in view definition 65
Keyed access 33
KSDS VSAM files 23

and recovery 132

L

LAST parameter
in GET command 161
in GO command 164
in INSERT command 168

Level of occurrence, and BY-
LEVEL command 143

Index

RDM Administration Guide 277

Line-number command
and DEFINE command 152
and EDIT command 156
and LIST command 174
example 174
syntax 173

Line-number parameter, in line-
number command 173

LINESIZE command
syntax 175

Link decks
for RDM interface 248
for RDM resident module 126
RDM samples in SUPRA

Server libraries 248
Linkpath area (LPA)

for performance optimization
126

installing RDM in 126
Linkpaths, unbound views 116
LIST

and DEFINE command 152
and EDIT command 156
and LINE-NUMBER command

174
and OPEN command 181
and REMOVE command 189
and SAVE command 193
and UNDEFINE command 203
syntax 176

Lock 162
Logical design, changing 116
Logical key

and access key 33
example 33
number in view 33
order of 64
with fixed values 39

Logical unit of work 149

M

Macro, C$VOOPTM 261
Maintenance restrictions, and

derived views 31
MARK command

and FORGET command 160
and RELEASE command 188
syntax 178

Mark-name parameter, in
FORGET command 160

MARKS command
example 179
syntax 179

MASS parameter, in INSERT
command 169

Memory
DBAID requirements 181
DBAID, conserving 178
extended 126, 225, 266
freeing 160, 203
global views and 122, 266
shared 126

Modifying a view definitions
in sample DBAID session 114

Modules, for RDM 227

N

Navigation
boundaries 57
constraints 57
database 55

NEXT parameter
for GET command 161
for GO command 164
for INSERT command 168

Nonunique key 33, 38
NONUNIQUE KEY, qualifier in

view column definition 65
NORMAL

base views and 24, 29
DBA and 27
domains and 40

Null value(s) 19
column 44
COLUMN-DEFN command and

40
constant value and 70
GET processing and 95
insertion integrity and 87
integrity and 89
KEY qualifier for view column

definition and 64
MASS parameter for DBAID

commands and 169
update integrity and 93
validation of 42, 45

Nullify delete 53
integrity and 97

Index

278 P26-8220-64

Number-of-characters parameter,
for DBAID command
LINESIZE 175

Number-of-lines parameter, for
DBAID command
PAGESIZE 182

O

ONCE clause, in view access
definition 72

Online DBAID session, sample
105

OPEN
LIST command and 181

OPEN command
syntax 180

OPEN, DBAID command
in sample DBAID session 106
UNDEFINE command and 203

OPEN, DBAID command
example 181

OPER CONNECT
parameters 232
process 231

Operating systems
OS/390/ESA 225, 261
OS/390/XA 225, 261

OS/390/ESA 225, 261
OS/390/XA 225, 261

P

Packed decimal fields validation
42

PAGESIZE, DBAID command,
syntax 182

Password parameter, for DBAID
command SIGN-ON 198

Pause job 128
PDM. See Physical Data

Manager (PDM)
Penetration

access method 55
PERMIT

COMMIT command and 149
DBAID command 132
DENY command and 155
RESET command and 192
syntax 183

Physical Data Manager (PDM)
file(s)

RDM access 23
recovery 132

required for RDM 28
thread processing 235

Physical design, changing 117
Physical file, keyed access 33
Physical key 33, 35
Picture clause, on RDM

Programmers' Report 215
PL/1 Programmers' Report 215
Position, current, marking 178
Precompilers, RDML 21, 225
Primary key

defined 87
deletion integrity and 96
insertion integrity and 91
update integrity and 93

PRINT-STATS
DBAID command 128
example 184
STATS-ON command and 201
syntax 184

PRIOR parameter
for DBAID commands 134
for GET command 161
for GO command 164
for INSERT command 168

Procedure samples, RDM, in
SUPRA Server libraries
134, 211, 225

Processing time, displaying 205
Program changes, determining

impact of 115
Programmers' Report

described 215
Programmers’ Report

view binding and 125
Public user 185
PUBLIC-DENY, DBAID

command
PUBLIC-PERMIT command

and 185
syntax 185

PUBLIC-PERMIT, DBAID
command

Directory Maintenance RELATE
function and 186

syntax 186

Index

RDM Administration Guide 279

PUBLIC-VIEWS, DBAID
command

syntax 187
VIEWS-FOR-USER command

and 210

R

Range checking 41
RDM (Relational Data Manager)

benefits of 19
Directory and 40
installing in linkpath area (LPA)

126
installing in shared virtual area

(SVA) 126
linking 261
maintaining 113
modules

interface modules, linking
exits with 247

list 227
resident module, moving to

shared memory 126
online options, OS/390,

specifying 261
reports, and stored views 29
samples, in SUPRA Server

libraries 211, 225, 248, 261
security 25

RDML. See Relational Data
Manipulation Language
(RDML)

Rebinding views 115, 117, 120
Recompile 115, 120
Records

recovery 132
Records, operations on. See Get,

Insert, Update, and/or
Delete

Redundant columns in view
column definition 68

joins and 43
Referential integrity examples 99

maintaining 87
rules 89

RELATE
DBAID command PUBLIC-

PERMIT and 186
function of Directory

Maintenance 132

Relational Data Manager. See
RDM

Relational Data Manipulation
Language (RDML) 19

DBAID commands 137
exits 249
precompilers 21, 225
processing 233
verbs. See Get, Insert, Update,

and/or Delete
Relational operators 19
Relationships

creating 156
removing 132, 185

RELEASE
DBAID command 188
in sample DBAID session 114
LIST command and 177
OPEN command and 181
syntax 188

REMOVE
COMMIT command and 149
DBAID command 132

RENUMBER, DBAID command,
syntax 191

Reports
DBA and 27
RDM 25, 211
types of 211

REQ
effect on processing 65
foreign key and 90
get processing and 95
qualifier in view column

definition 65
REQ qualifier and 39
Required column

CONST qualifier and 39
null value and 45

Required columns
designating 34

RESET
DBAID command 132
syntax 192

RESET command
view binding and 125

RESET command and
syntax 192

Index

280 P26-8220-64

Reset(s)
automatic, disabling 172
BIND command and 141
DENY command 155
ERASE command and 157
PERMIT command and 183
REMOVE command and 189
SAVE command and 193

Restart of task, during recovery
132

Restrict delete 53
integrity and 97

Retrieval of rows (records)
by penetration 164
by sweeping 164

Retrieval of rows (records). See
Get

Retrieval validation flag 41, 44
Rollback 190

during recovery 132
Row(s)

how RDM constructs 32
operations on. See Get, Insert,

Update, and/or Delete

S

SAME parameter
for DBAID commands 134
for GET command 161
for GO command 164

Samples, RDM, in SUPRA
Server libraries 211, 225,
248, 261

SAVE
BYE command and 142
COMMIT command and 149
DBAID command 193
EDIT command and 156
examples 194
LIST command and 177
RESET command and 194
syntax 193
view binding and 193

Schema name
BIND command in 140
COPY command and 150
EDIT command, in 156
LIST command 176
LIST command, security in 176
REMOVE command and 189
SAVE command in 193

Schema(s)
conceptual 24
external 25
internal 23

Secondary key(s), unbound
views and 116

Security
assigned on user basis 132
base views and 29
constant key and 39
controlling 39
DENY command and 155
derived views and 39
imposing on derived views 64
of database 21
PERMIT command and 183
RDM 26

Selection criteria, in view access
definition 74

Shared column values 54
Shared virtual area (SVA)

installing RDM in
installation procedure 127
optimizing performance 127

SHOW-NAVIGATION
DBAID command 195
example 195
syntax 195

SIGN-OFF
BYE command and 142
DBAID command 197
syntax 197

SIGN-ON, DBAID command
example 198
syntax 198

Simple nonunique key 38
Simple unique key 36
Slot(s)

size
global views and 124
MARK command and 178

specifying 267
Slots

defined 225
Software Selection Screen 105
Source file. See Source relation
Source relation

defined 87
deletion integrity and 96
integrity and 89
nullify delete and 97
update integrity and 93

Index

RDM Administration Guide 281

SPECTRA
user, views and 26
views and 21

Stack(s)
allocation of 228
defined 225
number, specifying 267
size, specifying 267

Statistics
BYE command and 142
commands, in DBAID 138
disabling 200
displaying on terminal 199
examples of 129
gathering 128, 201
interpreting 128
printing 184, 201
RDM 129
SIGN-OFF command and 197

STATS
DBAID command 128
example 199
STATS-ON command and 201
syntax 199

STATS-OFF
DBAID command 128
PRINT-STATS command and

184
STATS command and 200
syntax 200, 201

STATS-ON
DBAID command 128
PRINT-STATS command and

184
STATS command and 201
STATS-OFF command and 201

Status
indicators 58

Status exits 248
Status exits, RDM 244
Storage

configuring 228
freeing 160, 188, 203

SURE, DBAID command, syntax
202

SVA. See Shared virtual area
Sweep

as access method 55, 57
get requests 164

System commands, in DBAID
135

T

Table checking 42
Tabular data structure 19
Target file. See Target relation
Target relation

defined 87
integrity and 89
nullify delet and 97
update integrity and 93

Task abend, recovery and 132
Task level recovery (TLR) 132

RESET command and 192
Task restart, during recovery 132
TASKID exit, RDML 254
Text, displaying for column 148
Thread, processing 235
Three-schema architecture 25
TIS-CONTROL-AREA, statistics

gathering and 129
TIS-OPTIONS file, statistics

gathering and 129
TLR. See Task level recovery
Transaction level recovery (TLR).

See Task level recovery
Two-schema architecture 24

U

UNDEFINE, DBAID command
203

DEFINE command and 152
LIST command and 177
syntax 203
view binding and 125

Unique key 35
UPDATE

DBAID command 204
example 204
in sample DBAID session 113
syntax 204

UPDATE keyword
in view access definition 49, 52,

75
Update(s)

anomalies, avoiding 31
committing 149
reject 52

User name parameter
for DENY command 155
for PERMIT command 183

Index

282 P26-8220-64

User view(s)
defined 21
displaying 207
memory required for 123
name, parameter, for OPEN

command 180
User(s), number, specifying 270
USER-LIST, DBAID command

example 207
syntax 207

User-to-view relationships,
security and 26

USING parameter, for DBAID
commands

for GET command 163
for GO commands 166

V

Validation
criteria for derived view 31
during get processing 44
during insert processing 44, 51
during update processing 44,

51
exits 256

option specifying 41
information, COLUMN-DEFN

command and 40
of defaults 42
options 41
packed and zoned decimal

fields 42
table, on the Directory 42

Validity Status Indicator (VSI) 58
in sample DBAID session 106

Validity Status Indicators (VSI) 62
VARIABLE EDIT, Directory

Maintenance command, for
view definition 63

View definition(s) 64
changing, in sample DBAID

session 114
removing 189
storage of 25, 29
testing with DBAID 29

text
displaying for **PUBLIC**

user 187
displaying for signed-on user

187
view binding 125

with view binding 125
View(s)

access 21, 64
and security 26

active, displaying 209
base. See Base view(s)
binding, for performance

optimization 125
bound 115
changes, determining impact of

115
closing 188
definition. See View

definition(s)
derived. See Derived view(s)
description, displaying 208
displaying 168
maintenance action for 21
name(s), access definition, in

72
opening 180
rebinding 115, 140, 141
relating to user(s) 130, 183,

186
removing 189
subsetting for user(s) 22
testing 104
unbound 115
unnormalized, and nonunique

keys 38
user. See User view(s)
virtual. See Virtual view(s)

VIEW-DEFN, DBAID command
example 208
syntax 208

Views
Impacting Programs Report

223
Impacting Views Report 222
Used by Programs Report 115,

224
VIEWS, DBAID command

example 209
syntax 209

Index

RDM Administration Guide 283

VIEWS-FOR-USER, DBAID
command

example 210
syntax 210

Virtual view(s)
COPY command in 151
DEFINE command in 152
effect of BYE command on 142
modifying 156
removing 203
renumbering 191

VSI. See Validity Status Indicator
(VSI)

W

WHERE clause, in view access
definition 74

Z

Zoned decimal fields validation
42

Index

284 P26-8220-64

	Back to DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	SUPRA Server documentation series

	Chapter 1 - Overview of the SUPRA Relational Data Manager
	The user’s perspective—views
	Accessing views
	Subsetting views

	The DBA's perspective—three-schema architecture
	Internal schema
	Conceptual schema—base views
	External schema—derived views
	RDM security

	The DBA function in the RDM
	System requirements
	Directory
	Physical Data Manager
	Hardware

	Chapter 2 - Accessing user data
	Overview of base views and derived views
	Designing derived views
	How the RDM constructs rows
	Providing keyed access
	Unique keys
	Simple unique keys
	Compound unique keys

	Nonunique keys
	Simple nonunique keys
	Compound nonunique keys

	Constant keys
	Required columns

	Using domains, null values, and default values for physical fields
	Validation options
	Range checking
	Table checking
	Exits
	Default validation
	Join compatibility
	GET processing
	INSERT processing
	UPDATE processing

	Null values
	GET processing
	INSERT processing
	UPDATE processing
	DELETE processing

	Default values

	Chapter 3 - Modifying user data
	Changing the database contents
	Inserting information to the database
	Updating information on the database
	Deleting information from the database
	Allowing shared column values

	Retrieving data with the RDM
	Database penetration
	Database sweep
	Indexing
	Navigational constraints and boundaries

	Status indicators
	Function status indicators
	Column status indicators
	Validity status indicators

	Chapter 4 - Defining and using derived views
	Defining derived views
	Column definition
	Access definition

	Examples of derived view definitions
	Base relations
	Base views
	Derived views

	Processing derived views
	Processing the GET command
	Processing the INSERT command

	Chapter 5 - Maintaining referential integrity
	Integrity rules and checking
	Foreign key value integrity
	Insertion integrity
	Update integrity
	GET processing
	Deletion integrity
	Cascade delete
	Restrict delete
	Nullify delete

	Referential integrity examples

	Chapter 6 - Maintaining the RDM
	Defining and testing views with DBAID
	Signing on to DBAID and RDM
	Defining base views
	Defining a derived view
	Retrieving records
	Inserting records
	Updating a row
	Modifying a view definition

	Maintaining current programs and views
	Checking currentness of program
	Checking currentness of view bindings

	Optimizing performance
	Global view support
	View binding
	Installing the RDM resident module in shared memory
	Installation in the LPA under OS/390/XA
	Installation in the SVA under VSE

	Gathering and interpreting statistics
	Gathering statistics with DBAID
	Gathering statistics in an application program
	Interpreting RDM statistics
	Statistics example

	Relating views to users
	Recovering data

	Chapter 7 - Managing views with the DBAID commands
	Introduction to DBAID
	System commands
	Editing commands
	RDML commands
	Built-in view commands
	Statistic commands

	= command
	BIND command
	BYE command
	BY-LEVEL command
	CAUTIOUS Command
	COLUMN-DEFN command
	COLUMN-TEXT command
	COMMIT command
	COPY command
	DEFINE command
	DELETE command
	DENY command
	EDIT command
	ERASE command
	FIELD-DEFN command
	FORGET command
	GET command
	GO command
	INSERT command
	KEEP command
	Line-number command
	LINESIZE command
	LIST command
	MARK command
	MARKS command
	OPEN command
	PAGESIZE command
	PERMIT command
	PRINT-STATS command
	PUBLIC-DENY command
	PUBLIC-PERMIT command
	PUBLIC-VIEWS command
	RELEASE command
	REMOVE command
	RENUMBER command
	RESET command
	SAVE command
	SHOW-NAVIGATION command
	SIGN-OFF command
	SIGN-ON command
	STATS command
	STATS-OFF command
	STATS-ON command
	SURE command
	UNDEFINE command
	UPDATE command
	USER-LIST command
	VIEW-DEFN command
	VIEWS command
	VIEWS-FOR-USER command

	Chapter 8 - Using the RDM reports
	DBA report
	Programmer’s report
	End user report
	Impact of change report
	Files impacting views report
	Views impacting views report
	Views impacting programs report

	Views used by programs report

	Chapter 9 - Configuring the RDM for your environment
	Overview of configuring the RDM for your environment
	Configuring the RDM XA storage
	Interaction of options parameters
	Environment description parameters
	The connect/sinon process
	OPER CONNECT parameters
	RDML processing
	PDM thread processing
	CICS processing
	CICS limits

	Appendix A - Customizing the RDM processing with user exits
	Overview of customizing the RDM processing with user exits
	Using database exits
	Using environment˚independent database exits
	Using the function exit (CSVXFUNC)
	Using the status exit (CSVXSTAT)

	Using environment˚dependent database exits
	Using the function exit (CSVXOFNC or CSVXCFNC)
	Using the status exit (CSVXOSTA or CSVXCSTA)

	Using RDML exits
	Using the before˚function exit (CSVXBFOR)
	Using the after˚function exit (CSVXAFTR)
	Using the TASKID exit (CSVXTSID)

	Using validation exits

	Appendix B - Setting the online RDM options with macros
	Overview of setting the online RDM options with macros

	Index

